
Evaluation of Susceptibility under Different Landslide Sample Points and Polygonal Expression Modes
Deng Mingdong, Ju Nengpan, Wu Tianwei, Wen Yan, Xie Mingli, Zhao Weihua, He Jiayang
Evaluation of Susceptibility under Different Landslide Sample Points and Polygonal Expression Modes
Landslide cataloging modes are usually points and polygons. The location of landslide points and the sampling range of polygons will affect the results of landslide susceptibility evaluation. In order to study the differences in the susceptibility results of different points and polygonal landslide sample sampling strategies, taking Ningnan County, Sichuan Province as an example, landslide polygons and landslide steep sill buffer zones were used to compare the susceptibility evaluation of different polygon expression patterns. The influence of landslide sill point and landslide mass center point was used to compare the influence of different point expression patterns on susceptibility evaluation, and three evaluation models were selected, namely, support vector machine (SVM), random forest (RF) and artificial neural network (ANN). Landslide susceptibility modeling was performed, and differences in modeling were analyzed using ROC curve, mean, and standard deviation. The results are as follows: (1) When the landslide samples are in the polygonal expression mode, the evaluation effect of the steep sill buffer zone is better than that of the landslide polygon. When the landslide sample is in a point expression mode, the evaluation effect of the landslide mass center point is better than that of the landslide steep point. (2) The susceptibility evaluation effect of the RF model is better under different sampling strategies, and the susceptibility results based on the RF model under different sampling strategies are also less different, and have better generalization ability than the SVM and ANN models. (3) The discrete factor is the main factor leading to the difference in the susceptibility results of the sampling strategy under the point expression pattern. Compared with the landslide polygon, the sampling strategy of the steep sill buffer preserves the spatial information of discrete environmental factors such as rock formations, so the evaluation effect is better. It can be seen that using refined terrain features such as landslide steep ridge areas as landslide sampling methods at the county scale can improve the accuracy of susceptibility evaluation.
susceptibility evaluation / expression pattern / sampling strategy / landslides / landslide sample points / landslide polygon / hazards / terrain features
Abraham, M. T., Satyam, N., Lokesh, R., et al., 2021. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land, 10(9): 989. https://doi.org/10.3390/land10090989
|
Ali, R., Kuriqi, A., Kisi, O., 2020. Human-Environment Natural Disasters Interconnection in China: A Review. Climate, 8(4): 48. https://doi.org/10.3390/cli8040048
|
Bayat, M., Ghorbanpour, M., Zare, R., et al., 2019. Application of Artificial Neural Networks for Predicting Tree Survival and Mortality in the Hyrcanian Forest of Iran. Computers and Electronics in Agriculture, 164: 104929. https://doi.org/10.1016/j.compag.2019.104929
|
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018
|
Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract).
|
Huang, F.M., Cao, Y., Fan, X.M., et al., 2021. Influence of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract).
|
Huang, F.M., Hu, S.Y., Yan, X.Y., et al., 2022. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract).
|
Huang, F.M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
|
Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
|
Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
|
Liu, F.Z., Wang, L., Xiao, D.S., et al., 2021. Evaluation of Landslide Susceptibility in Ningnan County Based on Fuzzy Comprehensive Evaluation. Journal of Natural Disasters, 30(5): 237-246 (in Chinese with English abstract).
|
Mao, Y.K., 2020. Stability Evaluation of Landslide Based on Machine Learning and System Development (Dissertation). University of Electronic Science and Technology of China, Chengdu (in Chinese with English abstract).
|
Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523
|
Pourghasemi, H. R., Kornejady, A., Kerle, N., et al., 2020. Investigating the Effects of Different Landslide Positioning Techniques, Landslide Partitioning Approaches, and Presence-Absence Balances on Landslide Susceptibility Mapping. CATENA, 187: 104364. https://doi.org/10.1016/j.catena.2019.104364
|
Sahin, E. K., Colkesen, I., Kavzoglu, T., 2020. A Comparative Assessment of Canonical Correlation Forest, Random Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto International, 35(4): 341-363. https://doi.org/10.1080/10106049.2018.1516248
|
Süzen, M. L., Doyuran, V., 2004. Data Driven Bivariate Landslide Susceptibility Assessment Using Geographical Information Systems: A Method and Application to Asarsuyu Catchment, Turkey. Engineering Geology, 71(3/4): 303-321. https://doi.org/10.1016/S0013-7952(03)00143-1
|
Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
|
Xie, P., Wen, H. J., Ma, C. C., et al., 2018. Application and Comparison of Logistic Regression Model and Neural Network Model in Earthquake-Induced Landslides Susceptibility Mapping at Mountainous Region, China. Geomatics, Natural Hazards and Risk, 9(1): 501-523. https://doi.org/10.1080/19475705.2018.1451399
|
Xu, Q., Lu, H.Y., Li, W.L., et al., 2022. Types of Potential Landslide and Corresponding Identification Technologies. Geomatics and Information Science of Wuhan University, 47(3): 377-387 (in Chinese with English abstract).
|
Yilmaz, I., 2010. The Effect of the Sampling Strategies on the Landslide Susceptibility Mapping by Conditional Probability and Artificial Neural Networks. Environmental Earth Sciences, 60(3): 505-519. https://doi.org/10.1007/s12665-009-0191-5
|
Zhang, Y., Wu, W. C., Qin, Y. Z., et al., 2020. Mapping Landslide Hazard Risk Using Random Forest Algorithm in Guixi, Jiangxi, China. ISPRS International Journal of Geo-Information, 9(11): 695. https://doi.org/10.3390/ijgi9110695
|
Zhou, C., Yin, K.L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
|
Zhou, X. T., Wu, W. C., Lin, Z. Y., et al., 2021. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. International Journal of Environmental Research and Public Health, 18(11): 5906. https://doi.org/10.3390/ijerph18115906
|
Zhu, A. X., Miao, Y. M., Yang, L., et al., 2018. Comparison of the Presence-Only Method and Presence-Absence Method in Landslide Susceptibility Mapping. CATENA, 171: 222-233. https://doi.org/10.1016/j.catena.2018.07.012
|
/
〈 |
|
〉 |