Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching

Mei Shengyao, Zhong Qiming, Chen Shengshui, Shan Yibo

PDF(11350 KB)
PDF(11350 KB)
Earth Science ›› 2023, Vol. 48 ›› Issue (04) : 1634-1648. DOI: 10.3799/dqkx.2022.360

Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching

Author information +
History +

Abstract

Landslide dam is a common geological disaster in mountainous area. Once breach, it would pose a serious threat to the lives and property safety of downstream people. In emergency response, it is necessary to rapidly and accurately predict the landslide dam breach hydrograph and morphology evolution. However, most of the state-of-the-art numerical models for landslide dam breaching cannot fully consider the geomorphological characteristics of the landslide dam, as well as the breach process under complicated topography. In this paper, the Reynolds-averaged Navier-Stokes equations combined with the renormalization group k-ε turbulence model were used to analyze the breach flow under the complex topography. Meanwhile, the sediment transport equations for bedload and suspended load were employed to simulate the breach morphology evolution process. The “11•03” Baige landslide dam failure case with detailed survey and hydrological data was selected as the representative for back analysis. The comparison of the calculated and measured results on breach hydrographs, hydrodynamic characteristics during dam breaching, and final breach morphologies show that the numerical simulation results can present good performance on landslide dam breach process, which testified to the rationality of the model.

Key words

landslide dam / breach process / numerical simulation / breach hydrograph / breach morphology

Cite this article

Download Citations
Mei Shengyao , Zhong Qiming , Chen Shengshui , et al. Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching. Earth Science. 2023, 48(04): 1634-1648 https://doi.org/10.3799/dqkx.2022.360

References

ASCE/EWRI Task Committee on Dam/Levee Breaching, 2011. Earthen Embankment Breaching. Journal of Hydraulic Engineering, 137(12): 1549-1564. https://doi.org/10.1061/(asce)hy.1943-7900.0000498
Bagnold, R.A., 1966. An Approach to the Sediment Transport Problem from General Physics. U.S. Geological Survey Professional Paper, 422(1): 231-291.
Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood.Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y
Cai, Y.J., Luan, Y.S., Yang, Q.G., et al., 2019. Study on Structural Morphology and Dam-Break Characteristics of Baige Barrier Dam on Jinsha River. Yangtze River, 50(3): 15-22 (in Chinese with English abstract).
Cao, P., Li, Y.S., Li, Z.L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409 (in Chinese with English abstract).
Chang, D. S., Zhang, L. M., 2010. Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Natural Hazards and Earth System Sciences, 10(4): 933-946. https://doi.org/10.5194/nhess-10-933-2010
Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603
Chen, S.S., Chen, Z.Y., Zhong, Q.M., 2019. Progresses of Studies on Failure Mechanism and Numerical Dam Failure Model of Earth-Rockfill Dam and Landslide Dam. Water Resources and Hydropower Engineering, 50(8): 27-36 (in Chinese with English abstract).
Chen, Z. Y., Ma, L. Q., Yu, S., et al., 2015. Back Analysis of the Draining Process of the Tangjiashan Barrier Lake. Journal of Hydraulic Engineering, 141(4): 05014011. https://doi.org/10.1061/(asce)hy.1943-7900.0000965
Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)1001054: tfafon>2.3.co;2
Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626
Fan, X. M., Zhan, W. W., Dong, X. J., et al., 2018. Analyzing Successive Landslide Dam Formation by Different Triggering Mechanisms: The Case of the Tangjiawan Landslide, Sichuan, China. Engineering Geology, 243: 128-144. https://doi.org/10.1016/j.enggeo.2018.06.016
Guan, M. F., Wright, N. G., Andrew Sleigh, P., 2014. Multimode Morphodynamic Model for Sediment-Laden Flows and Geomorphic Impacts. Journal of Hydraulic Engineering, 141(6): 04015006. https://doi.org/10.1061/(asce)hy.1943-7900.0000997
Jiang, X. G., Wei, Y. W., 2020. Erosion Characteristics of Outburst Floods on Channel Beds under the Conditions of Different Natural Dam Downstream Slope Angles. Landslides, 17(8): 1823-1834. https://doi.org/10.1007/s10346-020-01381-y
Kaurav, R., Mohapatra, P. K., 2019. Studying the Peak Discharge through a Planar Dam Breach. Journal of Hydraulic Engineering, 145(6): 06019010. https://doi.org/10.1061/(asce)hy.1943-7900.0001613
Li, K., Cheng, Q.G., Lin, Q.W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract).
Liang, C. F., Abbasi, S., Pourshahbaz, H., et al., 2019. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water, 11(2): 235. https://doi.org/10.3390/w11020235
Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake-Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011
Marsooli, R., Wu, W. M., 2015. Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds. Journal of Hydraulic Engineering, 141(1): 04014066. https://doi.org/10.1061/(asce)hy.1943-7900.0000947
Mastbergen, D. R., van den Berg, J. H., 2003. Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
Mei, S. Y., Chen, S. S., Zhong, Q. M., et al., 2021. Effects of Grain Size Distribution on Landslide Dam Breaching—Insights from Recent Cases in China. Frontiers in Earth Science, 9: 658578. https://doi.org/10.3389/feart.2021.658578
Meyer-Peter, E., Muller, R., 1948. Formulas for Bed-Load Transport. Process of Congress IAHR, 6(2): 39-64.
Movahedi, A., Kavianpour, M. R., Yamini, O. A., 2018. Evaluation and Modeling Scouring and Sedimentation around Downstream of Large Dams. Environmental Earth Sciences, 77(8): 320. https://doi.org/10.1007/s12665-018-7487-2
Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y
Qian, N., 1980. A Comparison of the Bed Load Formulas. Journal of Hydraulic Engineering, 11(4): 1-11 (in Chinese with English abstract).
Roseberry, J. C., Schmeeckle, M. W., Furbish, D. J., 2012. A Probabilistic Description of the Bed Load Sediment Flux: 2. Particle Activity and Motions. Journal of Geophysical Research: Earth Surface, 117(F3): F03032. https://doi.org/10.1029/2012jf002353
Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385-401. https://doi.org/10.2166/hydro.2020.091
Shi, Z.M., Ma, X.L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790 (in Chinese with English abstract).
van Rijn, L. C., 1984. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(asce)0733-9429(1984)110: 10(1431)
van Rijn, L. C., 2020. Erodibility of Mud-Sand Bed Mixtures. Journal of Hydraulic Engineering, 146(1): 04019050. https://doi.org/10.1061/(asce)hy.1943-7900.0001677
Walder, J. S., Iverson, R. M., Godt, J. W., et al., 2015. Controls on the Breach Geometry and Flood Hydrograph during Overtopping of Noncohesive Earthen Dams. Water Resources Research, 51(8): 6701-6724. https://doi.org/10.1002/2014wr016620
Yakhot, V., Orszag, S. A., Thangam, S., et al., 1992. Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Physics of Fluids A: Fluid Dynamics, 4(7): 1510-1520. https://doi.org/10.1063/1.858424
Zhang, J. Y., Fan, G., Li, H. B., et al., 2021. Large-Scale Field Model Tests of Landslide Dam Breaching. Engineering Geology, 293: 106322. https://doi.org/10.1016/j.enggeo.2021.106322
Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y
Zhao, T.L., Chen, S.S., Wang, J.J., et al., 2016. Centrifugal Model Tests Overtopping Failure of Barrier Dams. Chinese Journal of Geotechnical Engineering, 38(11): 1965-1972 (in Chinese with English abstract).
Zhong, Q. M., Chen, S. S., Wang, L., et al., 2020. Back Analysis of Breaching Process of Baige Landslide Dam. Landslides, 17(7): 1681-1692. https://doi.org/10.1007/s10346-020-01398-3
Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/10.1016/j.earscirev.2021.103597
Zhu, X. H., Liu, B. X., Peng, J. B., et al., 2021. Experimental Study on the Longitudinal Evolution of the Overtopping Breaching of Noncohesive Landslide Dams. Engineering Geology, 288: 106137. https://doi.org/10.1016/j.enggeo.2021.106137
蔡耀军, 栾约生, 杨启贵, 等, 2019. 金沙江白格堰塞体结构形态与溃决特征研究. 人民长江, 50(3): 15-22.
曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409.
陈生水, 陈祖煜, 钟启明, 2019. 土石坝和堰塞坝溃决机理与溃坝数学模型研究进展. 水利水电技术, 50(8): 27-36.
李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912.
钱宁, 1980. 推移质公式的比较. 水利学报, 11(4): 1-11.
石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790.
赵天龙, 陈生水, 王俊杰, 等, 2016. 堰塞坝漫顶溃坝离心模型试验研究. 岩土工程学报, 38(11): 1965-1972.

Comments

PDF(11350 KB)

Accesses

Citation

Detail

Sections
Recommended

/