
Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models
Huang Faming, Ouyang Weiping, Jiang Shuihua, Fan Xuanmei, Lian Zhipeng, Zhou Chuangbing
Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models
In most of the landslide susceptibility prediction (LSP) models, the landslide-non landslide spatial datasets are divided into training/testing datasets according to the principle of spatial random, however, this spatial randomness division inevitably introduces uncertainties into LSP modelling. Theoretically, LSP modelling is based on past landslide inventories to predict the spatial probability of future landslides, which has significant time series characteristics rather than only spatial random characteristics. Therefore, we believe that it is necessary to divide spatial datasets into the model training/testing datasets based on the time series of landslide occurrence. Taking Wencheng County in China as an example, 11 types of environmental factors and 128 time-accurate landslides are obtained; Then, the landslide and non-landslide samples connected with environmental factors are divided into two different types of training/testing datasets according to the principles of landslide time series and spatial random, respectively. The division ratios of training/testing datasets are set as 9∶1, 8∶2, 7∶3, 6∶4 and 5∶5, respectively, to avoid the influences of different ratios on the LSP results. Thus, the training/testing datasets under 10 combined working conditions are obtained. Finally, several typical machine learning models, such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forest (RF), are then trained and tested to perform LSP and analyze their uncertainties. Results show that: (1) The LSP uncertainties performed by the time series-based SVM, MLP and RF models are slightly lower than those by spatial random-based models, which verifies the feasibility of dividing by time series; (2) The time series division of training/testing datasets is actually a “deterministic” case among the spatial random division, which is more consistent with the actual situation of landslides. Of course, it is also feasible to carry out spatial random division for training and testing datasets when lacking landslide occurrence time.
landslides / landslide susceptibility / time series / training/testing dataset / machine learning model / engineering geology
Cao, W. G., Pan, D., Xu, Z. J., et al., 2023. Landslide Hazard Susceptibility Mapping in Henan Province: Comparison of Multiple Machine Learning Models. Bulletin of Geological Science and Technology, 1-11 (in Chinese with English abstract).
|
Chen, W., Peng, J. B., Hong, H. Y., et al., 2018. Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
|
Guo, Y. H., Dou, J., Xiang, Z. L., et al., 2023. Evaluation of Susceptibility of Wenchuan Coseismic Landslide Using Gradient Lifting Decision Trees and Random Forests Based on Optimal Negative Sample Sampling Strategy. Geological Science and Technology Bulletin, 1-20 (in Chinese with English abstract).
|
Huang, F.M., Chen, B., Mao, D.X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
|
Huang, F.M., Chen, J.W., Tang, Z.P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
|
Huang, F. M., Hu, S.Y., Yan, X.Y., et al., 2022a. Landslide Susceptibility Prediction Modeling Based on Machine Learning and Identification of Main Control Factors. Bulletin of Geological Science and Technology, 41(2):79-90 (in Chinese with English abstract).
|
Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022b. Landslide Susceptibility Prediction Modeling Law Considering Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2):44-59 (in Chinese with English abstract).
|
Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
|
Hussin, H. Y., Zumpano, V., Reichenbach, P., et al., 2016. Different Landslide Sampling Strategies in a Grid-Based Bi-Variate Statistical Susceptibility Model. Geomorphology, 253: 508-523. https://doi.org/10.1016/j.geomorph.2015.10.030
|
Khanna, K., Martha, T. R., Roy, P., et al., 2021. Effect of Time and Space Partitioning Strategies of Samples on Regional Landslide Susceptibility Modelling. Landslides, 18(6): 2281-2294. https://doi.org/10.1007/s10346-021-01627-3
|
Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
|
Li, Y.W., Xu, L.R., Zhang, L.L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5):1960-1976 (in Chinese with English abstract).
|
Lombardo, L., Tanyas, H., 2020. Chrono-Validation of Near-Real-Time Landslide Susceptibility Models via Plug-in Statistical Simulations. Engineering Geology, 278: 105818. https://doi.org/10.1016/j.enggeo.2020.105818
|
Shirzadi, A., Solaimani, K., Roshan, M. H., et al., 2019. Uncertainties of Prediction Accuracy in Shallow Landslide Modeling: Sample Size and Raster Resolution. CATENA, 178: 172-188. https://doi.org/10.1016/j.catena.2019.03.017
|
Wang, L. L., 2016. Feature Processing Methods in the Assessment of the Vulnerability of Rainfall-Type Landslides. Zhejiang University, Hangzhou (in Chinese with English abstract).
|
Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
|
Zhang, H., Gu, Q.Y., Sun, C.B., et al., 2022. Landslide Susceptibility Mapping in Hilly and Gentle Slope Region Based on Interpretable Machine Learning. Journal of Chongqing Normal University (Natural Science), 39(3): 78-92 (in Chinese with English abstract).
|
Zhu, J.X., Zhang, L.Z., Zhou, X.Y., et al., 2014. Characteristics of Temporal Scale of Regional Landslides Susceptibility Assessment. Soil and Water Conservation in China, (6): 18-21, 69 (in Chinese with English abstract).
|
/
〈 |
|
〉 |