
Geothermal Resources Evaluation Based on 3D Geological Modeling: The Case of Shidian Geothermal Area
Zhao Jie, Guo Qinghai
Geothermal Resources Evaluation Based on 3D Geological Modeling: The Case of Shidian Geothermal Area
Although it is simple to evaluate geothermal resources using the traditional thermal reservoir method, the deviation of the evaluation results is usually large. Taking the Shidian geothermal field as a typical study area, a 3D geological model showing the distribution of geothermal reservoirs and caprocks in the area was built, using GMS software on the basis of geological and geothermal geological conditions in the region, combined with geophysical and drilling data. Considering the differences in the evaluation parameters of geothermal resources, the study area is divided into 9 sub-areas according to the thermal storage temperature, and the thermal reservoir volume is calculated in combination with the established three-dimensional geological model, and the improved thermal storage method is used to accurately and dynamically evaluate the study area. The heat stored in geothermal waters of the study area was calculated to be 1.38×1017 J, the heat stored in thermal storage rocks was 1.49×1019 J, and the total geothermal resources was 1.5×1019 J. According to the calculation results of the extractable amount of geothermal water, as well as the reasonable development and utilization of geothermal water resources in Shidian, 4.36×107 t of standard coal can be saved annually. This study provides a new mode for the scientific and rational evaluation of geothermal resources in Shidian.
3D geological modeling / geothermal resource evaluation / GMS / Shidian / geothermal water resources
Cai, Z. Z., 1992. Evaluation of Geothermal Resources in Huainan Coalfield. Coal Geology of China, 4(1): 53-58 (in Chinese with English abstract).
|
Fan, S. K., Cui, H. M., Zhou, L. B., 2015. Forecasting the Mine Water Inflow and Analyzing the Impact on the Environment Based on the GMS. China Mining Magazine, 24(S2): 178-181 (in Chinese with English abstract).
|
Fournier, R. O., 1979. Geochemical and Hydrologic Considerations and the Use of Enthalpy-Chloride Diagrams in the Prediction of Underground Conditions in Hot-Spring Systems. Journal of Volcanology and Geothermal Research, 5(1-2): 1-16. https://doi.org/10.1016/0377-0273(79)90029-5
|
He, T. Z., 2012. Assessment on Geothermal Energy Resources and Geothermal Water Storage in Xiaotangshan Geothermal Field. Urban Geology, 7(4): 20-23, 31 (in Chinese with English abstract).
|
He, Y., 2022. Geothermal Resource Status Quo and Resource Potential Assessment in Taihu Lake South Bank Area. Coal Geology of China, 34(1):75-80 (in Chinese with English abstract).
|
He, Y. J., Ding, X., 2020. Calculation of Geothermal Resources Based on Parameter Identification: A Case Study from the Western Slope of the Yinchuan Plain. Acta Geologica Sinica, 94(7): 2131-2138 (in Chinese with English abstract).
|
Huang, X. Y., 2011. Measurement Application of GMS Software in Three-Dimensional Geological Modeling. Advanced Measurement and Laboratory Management, 19(4): 10-12 (in Chinese).
|
Lautz, L. K., Siegel, D. I., 2006. Modeling Surface and Ground Water Mixing in the Hyporheic Zone Using MODFLOW and MT3D. Advances in Water Resources, 29(11): 1618-1633. https://doi.org/10.1016/j.advwatres.2005.12.003
|
Lee, Y., Park, S., Kim, J., et al., 2010. Geothermal Resource Assessment in Korea. Renewable and Sustainable Energy Reviews, 14(8): 2392-2400. https://doi.org/10.1016/j.rser.2010.05.003
|
Li, J. X., 2019. Study on the Key Factors of Geothermomenters and Their Application: A Case Study of Crystalline Basement Reservoirs (Dissertation). China University of Geosciences,Wuhan (in Chinese with English abstract).
|
Liu, J. Q., 2014. Estimation of Thermal Storage Temperature by Geothermal Thermometer: Taking Chongren Hot Water in Shengzhou as an Example. West-China Exploration Engineering, 26(5): 129-132 (in Chinese with English abstract).
|
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
|
Liu, X. M., 1986. Preliminary Evaluation of Geothermal Resources in Xi’an Area. Ground Water, 8(4): 52-54 (in Chinese with English abstract).
|
Pang, Z. H., Huang, S. P., Hu, S. B., et al., 2014. Geothermal Studies in China: Progress and Prospects 1995-2014. Chinese Journal of Geology, 49(3): 719-727 (in Chinese with English abstract).
|
Shen, Z. H., Xue, L., Han, L., et al., 2020. Calculation and Evaluation of Geothermal Resources in Zhangqiu Geothermal Field. Shandong Land and Resources, 36(4): 31-37 (in Chinese with English abstract).
|
Shi, L., 2004. Study of the Tectonic-Thermal Evolution of the Songliao Basin and Quantitative Assessment of Its Geothermal Resource: A Case Study on the Dumeng District (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
|
Wang, J. X., 2014. Evaluation on Geothermal Resource of Xinzhou Qicun (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Wang, Y. J., 2014. Reserves Evaluation of Geothermal Resource in Yinchuan Plain Based on 3D Geological Modeling (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Zhan, Q., Cui, Y., 2010. Present Situation and Prospect Analysis of Geothermal Resources Development and Utilization in China. Theory Monthly, (8): 170-172 (in Chinese).
|
Zhang, M. Z., Guo, Q. H., Liu, M. L., et al., 2023. Geochemical Characteristics and Formation Mechanism of Geothermal Water in Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987 (in Chinese with English abstract).
|
Zhu, X., Zhang, Q.L., Liu, Y.G., 2016. Evaluation of the Geothermal Resources in the Plain of West Shandong Province. Geological Science and Technology Information, 35(4): 172-177 (in Chinese with English abstract).
|
Zhu, Z. Z., Lei, X. D., Wu, X., et al., 2020. Geothermal Resource Evaluation in Changping New Town, Beijing: Perspective from 3D Geological Modeling. Geoscience, 34(1): 207-214 (in Chinese with English abstract).
|
蔡致中, 1992. 淮南煤田地热资源评价. 中国煤田地质, 4(1): 53-58.
|
范书凯, 崔海明, 周连碧, 2015. 基于GMS的矿坑涌水量预测与环境影响分析. 中国矿业, 24(S2): 178-181.
|
何铁柱, 2012. 北京小汤山地热田地热资源量及地热水储存量计算与评价. 城市地质, 7(4): 20-23, 31.
|
何钰, 2022. 太湖南岸地热资源现状及资源潜力评价. 中国煤炭地质, 34(1): 75-80.
|
何雨江, 丁祥, 2020. 基于参数辨识的典型区地热资源量研究: 以银川平原西部斜坡区为例. 地质学报, 94(7):2131-2138.
|
黄新迎, 2011. GMS软件在三维地质建模的测量应用. 现代测量与实验室管理, 19(4): 10-12.
|
李洁祥, 2019. 水化学地热温度计的主控因素及其应用研究: 以结晶岩类热储为例(博士学位论文). 武汉: 中国地质大学.
|
刘军强, 2014. 应用地热温标估算热储温度: 以嵊州崇仁热水为例. 西部探矿工程, 26(5): 129-132.
|
刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231.
|
刘肖梅, 1986. 西安地区地热资源的初步评价. 地下水, 8(4): 52-54.
|
庞忠和, 黄少鹏, 胡圣标, 等, 2014. 中国地热研究的进展与展望(1995-2014). 地质科学, 49(3): 719-727.
|
申中华, 薛磊, 韩琳, 等, 2020.章丘地热田地热资源量计算与评价. 山东国土资源, 36(4):31-37.
|
施龙, 2004. 松辽盆地构造热演化及地热资源定量评价研究: 以杜蒙地区为例(博士学位论文). 广州:中国科学院广州地球化学研究所.
|
王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京:中国地质大学.
|
王亚军, 2014. 基于三维地质建模的银川平原地热资源储量评价(硕士学位论文). 北京:中国地质大学.
|
詹麒, 崔宇, 2010. 我国地热资源开发利用现状与前景分析. 理论月刊, (8): 170-172.
|
张梦昭, 郭清海, 刘明亮, 等, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987.
|
朱喜, 张庆莲, 刘彦广, 2016. 基于热储法的鲁西平原地热资源评价. 地质科技情报, 35(4): 172-177.
|
朱振洲, 雷晓东, 武雄, 等, 2020. 基于三维地质建模的北京市昌平新城地热资源量评价. 现代地质, 34(1): 207-214.
|
/
〈 |
|
〉 |