
Did Grenvillian Orogeny ever Happen in Tarim Craton? Evidence from Detrital Zircon Chronology
Yi Ziyuan, Wei Guoqi, Guo Zhaojie
Did Grenvillian Orogeny ever Happen in Tarim Craton? Evidence from Detrital Zircon Chronology
In recent years, it has been suggested that a Grenvillian orogenic belt developed in the Tarim Craton. However, associated magmatic and metamorphic evidence is absence. An orogeny provides massive detritus for the nearby basin, and hence would be reflected in the detrital zircon records.In this study, seven Neoproterozoic sandstone samples were obtained in the Tieklik area (Southwest Tarim) and the Quruqtagh area (Northeast Tarim), and studied through detrital zircon U-Pb dating. A total of 1 135 detrital zircon age data were obtained. In the Nanhua System, there are tillites in the Bolong Formation and Yutang Formation in the Southwest Tarim. The maximum depositional ages constrained by the detrital zircon records are 693.2±3.3 Ma and 642.7±4.4 Ma, respectively. Therefore, the Bolong tillite and the Yutang tillite can be correlated with the Sturtian glaciation and the Marinoan glaciation, respectively. Besides, previously published data were integrated to form a complete detrital zircon U-Pb age database of the Neoproterozoic in the Tarim craton. It shows that the detrital zircon ages are mainly distributed in the ranges of 700-900 Ma and 1 800-2 100 Ma, which is inconsistent with the age range of 980-1 250 Ma for the Grenvillian orogeny.Besides, the provenances of the Neoproterozoic clastic rocks in the three outcrop areas, i.e., the Aksu, Quruqtagh and Tieklik areas, are significantly different. It indicates that there were more than one source regions during the Nanhua-Sinian periods, which contradicts the hypothesis of a large-scale orogen across the craton. In brief, this study concludes from the detrital zircon records that no Grenvillian collisional orogen developed in the Tarim craton.
Tarim craton / detrital zircon / Neoproterozoic / Grenvillian orogen / structural geology
Bingen, B., Andersson, J., Söderlund, U., et al., 2008. The Mesoproterozoic in the Nordic Countries. Episodes, 31(1): 29-34. https://doi.org/10.18814/epiiugs/2008/v31i1/005
|
Cawood, P. A., Korsch, R. J., 2008. Assembling Australia: Proterozoic Building of a Continent. Precambrian Research, 166(1/2/3/4): 1-35. https://doi.org/10.1016/j.precamres.2008.08.006
|
Chen, H., Lin, X., Cheng, X., et al., 2019. The Late Neoproterozoic Sedimentary Sequences in the Yutang Section Southwest Tarim Basin and Their Tectonic Implications and Hydrocarbon Perspective: Insight from Basinology. Precambrian Research, 333: 105432. https://doi.org/10.1016/j.precamres.2019.105432
|
Chen,H.J.,Wu,C.L.,Lei,M.,et al.,2018. Petrogenesis and Implications for Neoproterozoic Granites in Kekesayi Area, South Altyn Continent. Earth Science, 43(4): 1278-1295 (in Chinese with English abstract).
|
Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
|
Ding, H. F., Ma, D. S., Lin, Q. Z., et al., 2015. Age and Nature of Cryogenian Diamictites at Aksu, Northwest China: Implications for Sturtian Tectonics and Climate. International Geology Review, 57(16): 2044-2064. https://doi.org/10.1080/00206814.2015.1050463
|
Fitzsimons, I. C. W., 2000. Grenville-Age Basement Provinces in East Antarctica: Evidence for Three Separate Collisional Orogens. Geology, 28(10): 879-882. https://doi.org/10.1130/0091-7613(2000)28879: gbpiea>2.0.co;2
|
Gao, L.Z, Guo, X.P., Ding, X.Z.,et al., 2013. Nanhuan Glaciation Event and Its Stratigraphic Correlation in Tarim Plate, China. Acta Geoscientia Sinica, 34(1): 39-57 (in Chinese with English abstract).
|
Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Neoproterozoic to Paleozoic Long-Lived Accretionary Orogeny in the Northern Tarim Craton. Tectonics, 33(3): 302-329. https://doi.org/10.1002/2013tc003501
|
Gu, P.Y., Ji, W.H., Chen, R.M., et al., 2020. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution. Earth Science, 45(9): 3268-3281 (in Chinese with English abstract).
|
Guo, Z.J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
|
Guo, Z.J., Zhang, Z.C., Wang, J.J., 1998. Sm-Nd Isochron Age of Ophiolite Belt in the Northern Margin of Altun Mountain and Its Tectonic Significance. Chinese Science Bulletin, 43(18): 1981-1984 (in Chinese).
|
Hawkesworth, C., Cawood, P., Kemp, T., et al., 2009. A Matter of Preservation. Science, 323(5910): 49-50. https://doi.org/10.1126/science.1168549
|
He, J., Zhu, W., Ge, R., 2014a. New Age Constraints on Neoproterozoic Diamicites in Kuruktag, NW China and Precambrian Crustal Evolution of the Tarim Craton. Precambrian Research, 241: 44-60. https://doi.org/10.1016/j.precamres.2013.11.005
|
He, J., Zhu, W., Ge, R., et al., 2014b.Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton: Implications for Supercontinent Reconstruction and Crustal Evolution. Precambrian Research, 254: 194-209. https://doi.org/10.1016/j.precamres.2014.08.016
|
He, Z.Y, Zhang, Z.M., Zong, K.Q., et al., 2012. Neoproterozoic Granulites from the Northeastern Margin of the Tarim Craton: Petrology, Zircon U-Pb Ages and Implications for the Rodinia Assembly. Precambrian Research, 212/213: 21-33. https://doi.org/10.1016/j.precamres.2012.04.01
|
Li, Y.J., Sun, L.D., Hu, S.L., et al., 2003. 40Ar-39Ar Geochronology of the Granite and Diorite Revealed at the Bottom of Tacan 1, the Deepest Well in China. Acta Petrologica Sinica, 19(3): 530-536 (in Chinese with English abstract).
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210.
|
Li, Z., Qiu, N.S., Chang, J., et al.,2015. Precambrian Evolution of the Tarim Block and Its Tectonic Affinity to Other Major Continental Blocks in China: New Clues from U-Pb Geochronology and Lu-Hf Isotopes of Detrital Zircons. Precambrian Research, 270: 1-21. https://doi.org/10.1016/j.precamres.2015.09.011
|
Lu, Y.Z., Zhu, W.B., Ge, R.F., et al., 2017. Neoproterozoic Active Continental Margin in the Northwestern Tarim Craton: Clues from Neoproterozoic (Meta) Sedimentary Rocks in the Wushi Area, Northwest China. Precambrian Research, 298: 88-106. https://doi.org/10.1016/j.precamres.2017.06.002
|
Ma, S.P., Wang, Y.Z., Fang, X.L., 1989. The Sinian at North Slope, Western Kunlun Mountains. Xinjiang Geology, (4): 68-79(in Chinese with English Abstract).
|
Meert, J.G., 2003. A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics, 362(1-4): 1-40. https://doi.org/10.1016/S0040-1951(02)00629-7
|
Rainbird, R., Cawood, P., Gehrels, G., 2012. The Great Grenvillian Sedimentation Episode: Record of Supercontinent Rodinia’s Assembly. Tectonics of Sedimentary Basins.John Wiley & Sons, Ltd., Chichester, UK, 583-601. https://doi.org/10.1002/9781444347166.ch29
|
Ren, R., Guan, S.W., Zhang, S.C., et al., 2020. How did the Peripheral Subduction Drive the Rodinia Breakup: Constraints from the Neoproterozoic Tectonic Process in the Northern Tarim Craton. Precambrian Research, 339: 105612. https://doi.org/10.1016/j.precamres.2020.105612
|
Rivers, T., 2015. Tectonic Setting and Evolution of the Grenville Orogen: An Assessment of Progress over the Last 40 Years. Geoscience Canada, 42(1): 77-124. https://doi.org/10.12789/geocanj.2014.41.057
|
Santos, J. O. S., Rizzotto, G. J., Potter, P. E., et al., 2008. Age and Autochthonous Evolution of the Sunsás Orogen in West Amazon Craton Based on Mapping and U-Pb Geochronology. Precambrian Research, 165(3/4): 120-152. https://doi.org/10.1016/j.precamres.2008.06.009
|
Tong, Q.L., Wei, W., Xu, B., 2013. Neoproterozoic Sedimentary Facies and Ice Age Division in the Southwest Margin of Tarim Plate. Scientia Sinica (Terrae), 43(5): 703-715 (in Chinese).
|
Vandyk, T.M., Wu, G., Davies, B.J., et al., 2019.Temperate Glaciation on a Snowball Earth: Glaciological and Palaeogeographic Insights from the Cryogenian Yuermeinak Formation of NW China. Precambrian Research, 331: 105362. https://doi.org/10.1016/j.precamres.2019.105362
|
Vermeesch, P., 2004. How Many Grains are Needed for a Provenance Study? Earth and Planetary Science Letters, 224(3-4): 441-451. https://doi.org/10.1016/j.epsl.2004.05.037
|
Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140-146. https://doi.org/10.1016/j.chemgeo.2013.01.010
|
Wang, C., Liu, L., Wang, Y.H., et al., 2015. Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 257: 65-82. https://doi.org/10.1016/j.precamres.2014.11.022
|
Wen, B., Evans, D. A. D., Wang, C., et al., 2018. A Positive Test for the Greater Tarim Block at the Heart of Rodinia: Mega-Dextral Suturing of Supercontinent Assembly. Geology, 46(8): 687-690. https://doi.org/10.1130/g40254.1
|
Wu, G. H., Xiao, Y., He, J. Y., et al., 2019. Geochronology and Geochemistry of the Late Neoproterozoic A-Type Granitic Clasts in the Southwestern Tarim Craton: Petrogenesis and Tectonic Implications. International Geology Review, 61(3): 280-295. https://doi.org/10.1080/00206814.2017.1423521
|
Wu, G.H., Xiao, Y., Bonin, B., et al. 2018. Ca. 850 Ma Magmatic Events in the Tarim Craton: Age, Geochemistry and Implications for Assembly of Rodinia Supercontinent. Precambrian Research, 305: 489-503. https://doi.org/10.1016/j.precamres.2017.10.020
|
Wu, H.X., Zhang, F., Dilek, Y., et al., 2022. Mid-Neoproterozoic Collision of the Tarim Craton with the Yili-Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: A New Model. Earth-Science Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989
|
Wu, L., Guan, S. W., Ren, R., et al., 2017. Sedimentary Evolution of Neoproterozoic Rift Basin in Northern Tarim. Petroleum Research, 2(4): 315-323. https://doi.org/10.1016/j.ptlrs.2017.03.004
|
Wu, L., Guan, S. W., Ren, R., et al., 2021. Neoproterozoic Glaciations and Rift Evolution in the Northwest Tarim Craton, China: New Constraints from Geochronological, Geochemical, and Geophysical Data. International Geology Review, 63(1): 1-20. https://doi.org/10.1080/00206814.2019.1700399
|
Xia, B., Zhang, L. F., Du, Z. X., et al., 2019. Petrology and Age of Precambrian Aksu Blueschist, NW China. Precambrian Research, 326: 295-311. https://doi.org/10.1016/j.precamres.2017.12.041
|
Xiao, S.H., Bao, H.M., Wang, H.F., et al. 2004. The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 130(1-4): 1-26. https://doi.org/10.1016/j.precamres.2003.10.013
|
Xu, B., Xiao, S.H, Zou, H.B., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
|
Xu, B., Zou, H.B., Chen, Y., et al. 2013a. The Sugetbrak Basalts from Northwestern Tarim Block of Northwest China: Geochronology, Geochemistry and Implications for Rodinia Breakup and Ice Age in the Late Neoproterozoic. Precambrian Research, 236: 214-226. https://doi.org/10.1016/j.precamres.2013.07.009
|
Xu, Z.Q., He, B.Z., Zhang, C.L., et al., 2013b. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001
|
Ye, X. T., Zhang, C. L., Wang, A. G., et al., 2018. Early Paleozoic Slab Rollback in the North Altun, Northwest China: New Evidence from Mafic Intrusions and High-Mg Andesites. Lithosphere, 10(6): 687-707. https://doi.org/10.1130/l732.1
|
Yi, Z.Y., Guo, Z.J., Wei, G.Q., 2022. A Two-Stage Plume-Induced Rifting in the Neoproterozoic North Tarim: Evidence from Detrital Zircon Study and Seismic Interpretation. Tectonophysics, 838: 229503. https://doi.org/10.1016/j.tecto.2022.229503
|
Zhang, C.L., Ye, X.T., Zou, H.B., et al., 2016. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31-45. https://doi.org/10.1016/j.precamres.2016.04.011
|
Zhang, Y.L., Wang, Z.Q., Yan, Z., et al., 2011. Tectonic Setting of Neoproterozoic Beiyixi Formation in Quruqtagh Area, Xinjiang: Evidence from Geochemistry of Clastic Rocks. Acta Petrologica Sinica, 27(6): 1785-1796 (in Chinese with English abstract).
|
Zhao, P., He, J. Y., Deng, C. L., et al., 2021. Early Neoproterozoic (870-820 Ma) Amalgamation of the Tarim Craton (Northwestern China) and the Final Assembly of Rodinia. Geology, 49(11): 1277-1282. https://doi.org/10.1130/g48837.1
|
Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/g45719.1
|
Zhou, T., Ge, R. F., Zhu, W. B., et al., 2021. Is There a Grenvillian Orogen in the Southwestern Tarim Craton? Precambrian Research, 354: 106053. https://doi.org/10.1016/j.precamres.2020.106053
|
Zhu, W.B., Zheng, B.H., Shu, L.S., et al., 2011. Neoproterozoic Tectonic Evolution of the Precambrian Aksu Blueschist Terrane, Northwestern Tarim, China: Insights from LA-ICP-MS Zircon U-Pb Ages and Geochemical Data. Precambrian Research, 185(3/4): 215-230. https://doi.org/10.1016/j.precamres.2011.01.012
|
陈红杰, 吴才来, 雷敏, 等, 2018. 南阿尔金陆块科克萨依新元古代花岗岩成因及地质意义. 地球科学, 43(4): 1278-1295.
|
高林志, 郭宪璞, 丁孝忠, 等, 2013. 中国塔里木板块南华纪成冰事件及其地层对比. 地球学报, 34(1): 39-57.
|
辜平阳, 计文化, 陈锐明, 等, 2020. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示. 地球科学, 45(9): 3268-3281.
|
郭召杰, 张志诚, 王建君, 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报,43(18): 1981-1984.
|
李曰俊, 孙龙德, 胡世玲, 等, 2003. 塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究. 岩石学报,19(3): 530-536.
|
马世鹏, 汪玉珍, 方锡廉, 1989. 西昆仑山北坡的震旦系. 新疆地质, (4): 68-79.
|
童勤龙, 卫魏, 徐备, 2013. 塔里木板块西南缘新元古代沉积相和冰期划分. 中国科学: 地球科学, 43(5): 703-715.
|
张英利, 王宗起, 闫臻, 等, 2011. 库鲁克塔格地区新元古代贝义西组的构造环境: 来自碎屑岩地球化学的证据. 岩石学报,27(6): 1785-1796.
|
感谢两位审稿人细致的评阅和宝贵的意见.
/
〈 |
|
〉 |