Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island

Zhang Yanpeng, Li Qinghua, Yu Shaowen

PDF(4251 KB)
PDF(4251 KB)
Earth Science ›› 2024, Vol. 49 ›› Issue (03) : 952-964. DOI: 10.3799/dqkx.2022.225

Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island

Author information +
History +

Abstract

The understanding of the formation and evolution of geothermal water is an important basis for the scientific and rational utilization of regional geothermal resources. In this paper, the hydrochemical characteristics, geothermal storage temperature and recharge source of geothermal water in Guantang area on the east coast of Hainan were systematically revealed by using hydrochemical and isotopic analysis methods combined with regional geological structure characteristics, and a conceptual model of geothermal water cycle evolution in Guantang area was constructed. The results show that the hydrochemistry of geothermal water was mainly HCO3·SO4-Na type, and its components mainly came from silicate mineral dissolution and deep gas components. Geothermal water was mainly originated from meteoric precipitation, and the recharge area was most likely located at the altitude of 1 122.2-1 569.4 m. There was a significant mixing effect between geothermal water and shallow groundwater. Under the condition of steam loss before mixing, the mass percentage of steam loss from geothermal water was 18.2%-25.2%, and the initial temperature of geothermal water was 190.4-217.8 ℃, and the mass percentage of cold water mixing to geothermal water was 66.8%-80.8%. The geothermal water level decreased greatly with the increasing geothermal water exploration in this area in recent decades, so the increase of shallow groundwater supply may be the crucial process resulting in the decrease of geothermal water temperature in this area.

Key words

Guantang geothermal field / geothermal water resources / hydrogeochemistry / geothermal water recharge / geothermal storage temperature / hydrogeology

Cite this article

Download Citations
Zhang Yanpeng , Li Qinghua , Yu Shaowen. Hydrochemical Characteristics Constraints on Evolution of Geothermal Water in Guantang Area on the East Coast of Hainan Island. Earth Science. 2024, 49(03): 952-964 https://doi.org/10.3799/dqkx.2022.225

References

Awaleh, M. O., Hoch, F. B., Boschetti, T., et al., 2015. The Geothermal Resources of the Republic of Djibouti—II: Geochemical Study of the Lake Abhe Geothermal Field. Journal of Geochemical Exploration, 159: 129-147. https://doi.org/10.1016/j.gexplo.2015.08.011
Chen, L. Z., Ma, T., Du, Y., et al., 2016. Hydrochemical and Isotopic (2H, 18O and 37Cl) Constraints on Evolution of Geothermal Water in Coastal Plain of Southwestern Guangdong Province, China. Journal of Volcanology and Geothermal Research, 318: 45-54. https://doi.org/10.1016/j.jvolgeores.2016.03.003
Chen, Y. M., 2008. Present Situation of Geothermal Resource in Hainan Island and Suggestions for Development and Exploitation. Scientific and Technological Management of Land and Resources, 25(6): 61-65 (in Chinese with English abstract).
Clark, I. D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. CRC Press, Boca Raton.
Dotsika, E., Poutoukis, D., Raco, B., 2010. Fluid Geochemistry of the Methana Peninsula and Loutraki Geothermal Area, Greece. Journal of Geochemical Exploration, 104(3): 97-104. https://doi.org/10.1016/j.gexplo.2010.01.001
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
Fournier, R. O., Truesdell, A. H., 1974. Geochemical Indicators of Subsurface Temperature; Part II, Estimate of Temperature and Fractions of Hot Water Mixed with Cold Water. Journal of Research of the U.S. Geological Survey, 2(3): 263-270.
Fournier, R. O., White, D. E., Truesdell, A. H., 1974. Geochemical Indicators of Subsurface Temperature; Part I, Basic assumptions. Journal of Research of the U.S. Geological Survey, 2(3): 259-262.
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
Guo, J., Mao, X. M., Tong, S., et al., 2016. Using Hydrochemical Geothermometers Calculate Exchange Temperature of Deep Geothermal System in West Coastal Area of Guangdong Province. Earth Science, 41(12): 2075-2087 (in Chinese with English abstract).
Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
Gurav, T., Singh, H. K., Chandrasekharam, D., 2015. Major and Trace Element Concentrations in the Geothermal Springs along the West Coast of Maharashtra, India. Arabian Journal of Geosciences, 9(1): 1-15. https://doi.org/10.1007/s12517-015-2139-2
Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong’an New Area. Earth Science, 48(3): 958-972 (in Chinese with English abstract).
Kaown, D., Koh, D. C., Mayer, B., et al., 2009. Identification of Nitrate and Sulfate Sources in Groundwater Using Dual Stable Isotope Approaches for an Agricultural Area with Different Land Use (Chuncheon, Mid-Eastern Korea). Agriculture, Ecosystems & Environment, 132(3-4): 223-231. https://doi.org/10.1016/j.agee.2009.04.004
Li, C. S., Wu, X. C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji’nan. Earth Science, 43(S1): 313-325 (in Chinese with English abstract).
Li, J. L., Gao, B., Dong, Y. H., et al., 2017. Sources of Geothermal Water in Jiangxi Province, SE-China: Evidences from Hydrochemistry and Isotopic Composition. Procedia Earth and Planetary Science, 17: 837-840. https://doi.org/10.1016/j.proeps.2017.01.057
Li, Q. H., Zhang, Y. P., Chen, W., et al., 2018. The Integrated Impacts of Natural Processes and Human Activities on Groundwater Salinization in the Coastal Aquifers of Beihai, Southern China. Hydrogeology Journal, 26(5): 1513-1526. https://doi.org/10.1007/s10040-018-1756-8
Lund, J. W., Toth, A. N., 2021. Direct Utilization of Geothermal Energy 2020 Worldwide Review. Geothermics, 90: 101915. https://doi.org/10.1016/j.geothermics.2020.101915
Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323
Merkel, B. J., Planer-Friedrich, B., 2008. Groundwater Geochemistry. In: Nordstrom, D. K., ed., A Practical Guide to Modelling of Natural and Contaminated Aquatic Systems (2nd Edition). Springer, New York.
Najafi, G., Ghobadian, B., 2011. Geothermal Resources in Iran: The Sustainable Future. Renewable and Sustainable Energy Reviews, 15(8): 3946-3951. https://doi.org/10.1016/j.rser.2011.07.032
Song, X. F., Liu, X. C., Xia, J., et al., 2007. Study on the Transformation Relationship between Surface Water and Groundwater in Huaisha River Basin Based on Environmental Isotope Technology. Science in China (Series D), 37(1): 102-110 (in Chinese).
Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380
Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
Truesdell, A. H., Fournier, R. O., 1977. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica Versus Enthalpy. Journal of Research of the U.S. Geological Survey, 5: 49-52.
Wang, J. Y., Pang, Z. H., Hu, S. B., et al., 2015. Geothermics and Its Applications. Science Press, Beijing (in Chinese).
Wang, X. A., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018: 1-24. https://doi.org/10.1155/2018/8715080
Wang, X. C., Zhou, X., 2019. Geothermometry and Circulation Behavior of the Hot Springs in Yunlong County of Yunnan in Southwest China. Geofluids, 2019: 1-16. https://doi.org/10.1155/2019/8432496
Wang, X. L., Zeng, W. T., Yang, Y. P., et al., 2018. Geological and Hydrochemical Characteristics of Longmuwan Geothermal Field in Ledong, Hainan. West-China Exploration Engineering, 30(9): 111-112, 117 (in Chinese with English abstract).
Wu, C., Wu, X., Mu, W. P., et al., 2020. Using Isotopes (H, O, and Sr) and Major Ions to Identify Hydrogeochemical Characteristics of Groundwater in the Hongjiannao Lake Basin, Northwest China. Water, 12(5): 1467. https://doi.org/10.3390/w12051467
Wu, G. W., Wang, P., Wang, X. F., et al., 2015. Hydro-Geochemical Type and Main Components Origin Analysis of the Geothermal Water in Tongren. Ground Water, 37(4): 4-7 (in Chinese with English abstract).
Wu, Y. J., Chen, C. X., Yuan, F., 2021. Temporal-Spatial Distribution Regularities of Kaolin Deposits in China. Acta Geoscientica Sinica, 42(5): 628-640 (in Chinese with English abstract).
Wu, Y., Wang, Y. X., 2014. Geochemical Evolution of Groundwater Salinity at Basin Scale: A Case Study from Datong Basin, Northern China. Environmental Science Processes & Impacts, 16(6): 1469-1479. https://doi.org/10.1039/c4em00019f
Yang, F., Ruan, M., Zhang, D. Q., et al., 2018. Study on the Geochemical Characteristics of Hot Mineral Water Isotope in Haipo District, Sanya City, Hainan Province. Ground Water, 40(4): 15-17 (in Chinese with English abstract).
Yokochi, R., Purtschert, R., Suda, Y., et al., 2021. Chemical and Isotopic Constraints on Hydrological Processes in Unzen Volcanic Geothermal System. Journal of Volcanology and Geothermal Research, 419: 107353. https://doi.org/10.1016/j.jvolgeores.2021.107353
Yuan, J. F., Xu, F., Zheng, T. L., 2022. The Genesis of Saline Geothermal Groundwater in the Coastal Area of Guangdong Province: Insight from Hydrochemical and Isotopic Analysis. Journal of Hydrology, 605: 127345. https://doi.org/10.1016/j.jhydrol.2021.127345
Zeng, T. R., 2019. Research on Basic Characteristics of 2H, 18O and 14C in Geothermal Fluid in Guangdong Province, China. Journal of Groundwater Science and Engineering, 7(1): 42-52. https://doi.org/10.19637/j.cnki.2305-7068.2019.01.004
Zhang, J. Y., 2012. Geochemical Studies of the Mineralization by Weathering of Cenozoic Volcanic Rocks in North Hainan Island (Dissertation). China University of Geoscience, Wuhan (in Chinese with English abstract).
Zhang, X. B., Guo, Q. H., Zhang, M. Z., et al., 2023. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System. Earth Science, 48(3): 908-922 (in Chinese with English abstract).
Zhang, Y. H., Xu, M., Li, X. A., et al., 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water, 10(1): 80. https://doi.org/10.3390/w10010080
Zhang, Y., 2019. A Study of the Characteristics and Formation of the Hot Springs in Hainan Island (Dissertation). China University of Geoscience, Beijing (in Chinese with English abstract).
Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1

Comments

PDF(4251 KB)

Accesses

Citation

Detail

Sections
Recommended

/