Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China

Wu Dengyun, Ren Zhikun, Honghua Lü, Liu Jinrui, Lei Jinghao, Bao Guodong, Zhang Zhiliang, Ha Guanghao

PDF(10046 KB)
PDF(10046 KB)
Earth Science ›› 2023, Vol. 48 ›› Issue (04) : 1389-1404. DOI: 10.3799/dqkx.2022.169

Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China

Author information +
History +

Abstract

Subsurface fault geometry and deformation rates can be estimated by combining the pattern of terrace deformation with kinematic model and geomorphic age. Quantifying the geometry, kinematics and deformation rate of the thrust-and-fold belt is the key to exploring tectonic deformation and strain distribution of the Tianshan intermontane basin. This is demonstrated by the Bayan anticline in Youlududsi basin in the eastern Chinese Tianshan. The Kaidu River, flowing through the central part of the Bayan anticline, has formed three terrace levels at tilted fold backlimbs. Based on the field geological investigation, warped and tilted terraces in the Bayan anticline are characterized by broad, continuous backlimbs and abrupt forelimbs and suggest folding through progressive limb rotation of listric thrust model. Combining with the kinematic model and geomorphic age, the slip rate and crustal shortening rate of the underlying fault in Bayan anticline is (0.35-0.06)-(0.35+0.16) mm/a and (0.23-0.04)-(0.23+0.10) mm/a, respectively. This shortening represents over 15%-20% of the total deformation in Youludusi basin and ~2% of the 8.5±0.5 mm/a total shortening rate measured from GPS velocity across the entire range in East Tianshan.Therefore, a significant fraction of the total Quaternary deformation is accommodated within the central part of the East Tianshan.

Key words

listric thrust / terrace / Bayan anticline / Youludusi basin / Tianshan / structural geology

Cite this article

Download Citations
Wu Dengyun , Ren Zhikun , Honghua Lü , et al . Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China. Earth Science. 2023, 48(04): 1389-1404 https://doi.org/10.3799/dqkx.2022.169

References

Allmendinger, R.W., 1998. Inverse and Forward Numerical Modeling of Trishear Fault-Propagation Folds.Tectonics, 17(4): 640-656. https://doi.org/10.1029/98tc01907
Amos, C. B., Burbank, D. W., Nobes, D. C., et al., 2007. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand. Journal of Geophysical Research, 112(B3): B03S11. https://doi.org/10.1029/2006jb004291
Amos, C. B., Burbank, D. W., Read, S. A. L, 2010. Along-Strike Growth of the Ostler Fault, New Zealand: Consequences for Drainage Deflection above Active Thrusts.Tectonics, 29(4): 1-33. https://doi.org/10.1029/2009tc002613
Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia.Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93GL00128
Benedetti, L., Tapponnier, P., King, G. C. P., et al., 2000.Growth Folding and Active Thrusting in the Montello Region, Veneto, Northern Italy.Journal of Geophysical Research: Solid Earth, 105(B1): 739-766. https://doi.org/10.1029/1999jb900222
Burbank, D.W., Anderson, R.S., 2013. Tectonic Geomorphology,Second Edition. Environmental & Engineering Geoscience, 19: 198-200. https://doi.org/10.2113/GSEEGEOSCI.19.2.198
Cao, X. L., Hu, X. F., Pan, B. T., et al., 2021.Using Fluvial Terraces as Distributed Deformation Offset Markers: Implications for Deformation Kinematics of the North Qilian Shan Fault.Geomorphology, 386: 107750. https://doi.org/10.1016/j.geomorph.2021.107750
Cardozo, N., Brandenburg, J. P., 2014. Kinematic Modeling of Folding above Listric Propagating Thrusts.Journal of Structural Geology, 60: 1-12. https://doi.org/10.1016/j.jsg.2013.12.004
Cardozo, N., Jackson, C.A.L., Whipp, P.S., 2011. Determining the Uniqueness of Best-Fit Trishear Models.Journal of Structural Geology, 33(6): 1063-1078. https://doi.org/10.1016/j.jsg.2011.04.001
Charreau, J., Avouac, J. P., Chen, Y., et al., 2008.Miocene to Present Kinematics of Fault-Bend Folding across the Huerguosi Anticline, Northern Tianshan (China), Derived from Structural, Seismic, and Magnetostratigraphic Data. Geology, 36(11): 871-874. https://doi.org/10.1130/g25073a.1
Charreau, J., Saint-Carlier, D., Dominguez, S., et al., 2017. Denudation Outpaced by Crustal Thickening in the Eastern Tianshan. Earth and Planetary Science Letters, 479: 179-191. https://doi.org/10.1016/j.epsl.2017.09.025
Chen, Y.Y., Li, Y.Q., Wei, D.T., et al., 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436 (in Chinese with English abstract).
Davis, K., Burbank, D. W., Fisher, D., et al., 2005. Thrust-Fault Growth and Segment Linkage in the Active Ostler Fault Zone, New Zealand.Journal of Structural Geology, 27(8): 1528-1546. https://doi.org/10.1016/j.jsg.2005.04.011
Deng, Q.D., Feng, X.Y., Zhang, P.Z., et al., 2000.Active Tectonics of the Tianshan Mountains. Seismological Press, Beijing (in Chinese).
Erslev, E. A., 1986. Basement Balancing of Rocky Mountain Foreland Uplifts.Geology, 14(3): 259. https://doi.org/10.1130/0091-7613(1986)14259: bbormf>2.0.co;2
Erslev, E. A., 1991. Trishear Fault-Propagation Folding.Geology, 19(6): 617. https://doi.org/10.1130/0091-7613(1991)0190617: tfpf>2.3.co;2
Gold, R.D., Cowgill, E., Wang, X. F., et al., 2006. Application of Trishear Fault-Propagation Folding to Active Reverse Faults: Examples from the Dalong Fault, Gansu Province, NW China. Journal of Structural Geology, 28: 200-219. https://doi.org/10.1016/J.JSG.2005.10.006
Guo, C., Zhang, Z.Y., Wu, L., et al., 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430 (in Chinese with English abstract).
Hardy, S., Poblet, J., 1994.Geometric and Numerical Model of Progressive Limb Rotation in Detachment Folds.Geology, 22(4): 371-374. https://doi.org/10.1130/0091-7613(1994)0220371: ganmop>2.3.co;2
Huang, W.L., 2015. Crustal Shortening Rate across the Yanqi Basin, Tianshan during Mid-Late Quaternary (Dissertation).Institute of Geology, China Earthquake Administration, Beijing, 91-120(in Chinese with English abstract).
Huang, W.L., 2015. Late Pleistocene Shortening Rate on the Northern Margin of the Yanqi Basin, Southeastern Tian Shan, NW China.Journal of Asian Earth Sciences, 112: 11-24. https://doi.org/10.1016/j.jseaes.2015.08.024
Jolivet, M., Dominguez, S., Charreau, J., et al., 2010.Mesozoic and Cenozoic Tectonic History of the Central Chinese Tian Shan: Reactivated Tectonic Structures and Active Deformation. Tectonics, 29(6): 1-30. https://doi.org/10.1029/2010tc002712
Lavé, J., Avouac, J. P., 2000. Active Folding of Fluvial Terraces across the Siwaliks Hills, Himalayas of Central Nepal.Journal of Geophysical Research: Solid Earth, 105(B3): 5735-5770. https://doi.org/10.1029/1999jb900292
Liu, Q. R., Zhang, H. P., Li, Y. L., et al., 2021. Effects of Erosion and Deposition on Constraining Vertical Slip Rates of Thrust Faults: A Case Study of the Minle-Damaying Fault in the North Qilian Shan, NE Tibetan Plateau. Frontiers in Earth Science, 9:635702. https://doi.org/10.3389/feart.2021.635702
Lu, H. H., Li, B. J., Wu, D. Y., et al., 2019.Spatiotemporal Patterns of the Late Quaternary Deformation across the Northern Chinese Tian Shan Foreland.Earth-Science Reviews, 194: 19-37. https://doi.org/10.1016/j.earscirev.2019.04.026
Scharer, K. M., Burbank, D. W., Chen, J., et al., 2006. Kinematic Models of Fluvial Terraces over Active Detachment Folds: Constraints on the Growth Mechanism of the Kashi-Atushi Fold System, Chinese Tian Shan. Geological Society of America Bulletin, 118(7/8): 1006-1021. https://doi.org/10.1130/b25835.1
Seeber, L., Sorlien, C. C., 2000. Listric Thrusts in the Western Transverse Ranges, California.Geological Society of America Bulletin, 112(7): 1067-1079. https://doi.org/10.1130/0016-7606(2000)1121067: ltitwt>2.0.co;2
Stewart, I. S., Hancock, P. L., 1988. Normal Fault Zone Evolution and Fault Scarp Degradation in the Aegean Region.Basin Research, 1(3): 139-153. https://doi.org/10.1111/j.1365-2117.1988.tb00011.x
Thompson, S. C., Weldon, R. J., Rubin, C. M., et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia.Journal of Geophysical Research: Solid Earth, 107(B9):ETG7-1. https://doi.org/10.1029/2001jb000596
Trexler, C. C., Cowgill, E., Spencer, J. Q. G., et al., 2020.Rate of Active Shortening across the Southern Thrust Front of the Greater Caucasus in Western Georgia from Kinematic Modeling of Folded River Terraces above a Listric Thrust.Earth and Planetary Science Letters, 544: 116362. https://doi.org/10.1016/j.epsl.2020.116362
Wang, Y. R., Oskin, M. E., Zhang, H. P., et al., 2020a. Deducing Crustal-Scale Reverse-Fault Geometry and Slip Distribution from Folded River Terraces, Qilian Shan, China.Tectonics, 39(1):e2019TC005901. https://doi.org/10.1029/2019tc005901
Wang, S. Y., Jiao, R. H., Ren, Z. K., et al., 2020b. Active Thrusting in an Intermontane Basin: The Kumysh Fault, Eastern Tian Shan.Tectonics, 39(8):e2019TC006029. https://doi.org/10.1029/2019tc006029
Wu, C. Y., Wu, G. D., Shen, J., et al., 2016.Late Quaternary Tectonic Activity and Crustal Shortening Rate of the Bogda Mountain Area, Eastern Tian Shan, China.Journal of Asian Earth Sciences, 119: 20-29. https://doi.org/10.1016/j.jseaes.2016.01.001
Wu, C.Y., Wu, G.D., Shen, J., et al., 2014.The Late Quaternary Activity of the Nalati Fault and Its Implications for the Crustal Deformation in the Interior of the Tianshan Mountains.Quaternary Sciences, 34(2): 269-280 (in Chinese with English abstract).
Wu, G., Ran, H.L., Zhou, Q., 2022. Probabilistic Fault Displacement Hazard Analysis Based on Monte Carlo Simulation.Earth Science, 47(3): 844-855 (in Chinese with English abstract).
Yang, X., Wu, C. Y., Li, Z. G., et al., 2021. Late Quaternary Kinematics and Deformation Rate of the Huoyanshan Structure Derived from Deformed River Terraces in the South Piedmont of the Eastern Chinese Tian Shan.Frontiers in Earth Science, 9:649011. https://doi.org/10.3389/feart.2021.649011
Zhang, P.Z., 2003.Late Cenozoic Tectonic Deformation of Tianshan Foreland Basin.Chinese Science Bulletin, 48(24): 2499-2500 (in Chinese).
Zheng, G., Wang, H., Wright, T. J., et al., 2017.Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements.Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017jb014465
Zhou, Z.L., Xiao, J.L., Yuan, S.Q., 2001. The Structure Geology Characteristic of Yultuz Basin in Western Tianshan Mountains.Xinjiang Geology, 19(2): 93-96 (in Chinese with English abstract).
Zubovich, A. V., Wang, X. Q., Scherba, Y. G., et al., 2010. GPS Velocity Field for the Tien Shan and Surrounding Regions.Tectonics, 29(6):250-272. https://doi.org/10.1029/2010tc002772
陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436.
邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造. 北京: 地震出版社, 1-20.
郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430.
黄伟亮, 2015. 天山内部焉耆盆地中晚第四纪地壳缩短速率研究(博士学位论文). 北京:中国地震局地质研究所, 91-120.
吴传勇, 吴国栋, 沈军, 等, 2014. 那拉提断裂晚第四纪活动及其反映的天山内部构造变形. 第四纪研究, 34(2): 269-280.
吴果, 冉洪流, 周庆, 2022. 基于蒙特卡洛模拟的概率断层位错危险性分析. 地球科学, 47(3): 844-855.
张培震, 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48(24): 2499-2500.
周宗良, 肖建玲, 袁淑琴, 2001. 中国天山西段尤路都斯盆地构造地质特征. 新疆地质, 19(2): 93-96.

审稿专家和编辑部老师提出了详细而宝贵的修改意见和建议,在此致以诚挚谢意!

Comments

PDF(10046 KB)

Accesses

Citation

Detail

Sections
Recommended

/