
Characteristics of Geothermal Geology of the Gulu Geothermal Field in Tibet
Gao Honglei, Hu Zhihua, Wan Hanping, Hao Weilin, Zhang Song, Liang Xiao
Characteristics of Geothermal Geology of the Gulu Geothermal Field in Tibet
The Gulu geothermal field successfully revealed high temperature thermal reservoir of 189.2 °C in 2020, therefore, studying geothermal geological characteristics of the Gulu geothermal field can be significant for guiding geothermal development and helpful for revealing the high temperature geothermal system mechanism. Based on the structural geological survey, combined with the latest geophysical, drilling, and hydrological data, this paper summarizes the structural thermal control laws of the Gulu geothermal field by analyzing the internal connection of the structure-water-thermal cycle system, and establishes a conceptual model of the geothermal system. The faults of the Gulu geothermal field can be divided into 3 groups: N-S trending (F1, F3), E-W trending (F2, F4) and NE trending. Atmospheric precipitation and iceberg meltwater migrated deep along the Jiuzila-Sangxiong fault, and were heated by deep heat sources to form high-temperature geothermal fluids, and rose along the F1 fault at the edge of the basin. The hot water was blocked by the F2 and F4 faults near surface, converging into thermal reservoir, migrating and draining along the channel system which formed by the N-S and NE faults; The conglomerate cemented by sinter overlying the basement granite played a role in ensuring water and thermal insulation for thermal reservoir. The Quaternary sediments were very thin in geothermal field, and the thermal reservoir was mainly stored in the bedrock fissures. According to the results, the “Y”-shaped fault system formed by F1 and F3 faults is the main storage place for thermal reservoir, and these two faults can be regarded as the main target for deep geothermal exploration.
Gulu / geothermal field / geothermal power generation / conceptual model / bedrock fractured thermal reservoir
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research Atmospheres, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
|
Bian, S., Yu, Z. Q., Gong, J. F., et al., 2021. Spatiotemporal Distribution and Geodynamic Mechanism of the nearly NS-Trending Rifts in the Tibetan Plateau. Journal of Geomechanics, 27(2): 178-194 (in Chinese with English abstract).
|
Brown, L. D., Zhao, W. J., Nelson, K. D., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688-1690. https://doi.org/10.1126/science.274.5293.1688
|
Chen, Y. J., Gao, J. C., Feng, J. J., et al., 1992. A Preliminary Study on the History of Hydrothermal Activities Occurred in Southern Tibetan. Hydrogeology and Engineering Geology, 19(5): 18-21, 24 (in Chinese with English abstract).
|
Duo, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field-A Typical High Temperature Geothermal System. Engineering Science, 5(1): 42-47 (in Chinese with English abstract).
|
Feng, Z. J., Zhao, Y. S., Zhou, A. C., et al., 2012. Development Program of Hot Dry Rock Geothermal Resource in the Yangbajing Basin of China. Renewable Energy, 39(1): 490-495. https://doi.org/10.1016/j.renene.2011.09.005
|
Guo, Q. H., Wang, Y. X., Liu, W., 2007. Major Hydrogeochemical Processes in the Two Reservoirs of the Yangbajing Geothermal Field, Tibet, China. Journal of Volcanology and Geothermal Research, 166(3-4): 255-268. https://doi.org/10.1016/j.jvolgeores.2007.08.004
|
Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
|
Ha, G. H., Wu, Z. H., Liu, F., 2019. Late Quaternary Vertical Slip Rates along the Southern Yadong-Gulu Rift, Southern Tibetan Plateau. Tectonophysics, 755: 75-90. https://doi.org/10.1016/j.tecto.2019.02.014
|
He, Z. H., Yang, D. M., Wang, T. W., 2007. Geochemistry and Tectonic Setting of Miocene Granitoids near Gulou Area, Gangdise Belt. Journal of Jilin University (Earth Science Edition), 37(1): 31-37 (in Chinese with English abstract).
|
Hu, Z. H., Gao, H. L., Wan, H. P., et al., 2022. Temporal and Spatial Evolution of Hydrothermal Alteration in the Yangbajing Geothermal Field, Xizang(Tibet). Geological Review, 68(1): 359-374 (in Chinese with English abstract).
|
Huang, J. C., Liang, H. J., Gu, X. X., 2021. Development Situation of Geothermal Energy in China and Development Proposals in the 14th Five-Year Plan Period. World Petroleum Industry, 28(2): 41-46 (in Chinese with English abstract).
|
Li, Z. Q., 2002. Present Hydrothermal Activities during Collisional Orogenics of the Tibetan Plateau (Dissertation). Chinese Academy of Geological Sciences, Beijing, (in Chinese with English abstract).
|
Liu, J., Shen, X.H., Meng, K., et al., 2009. Preliminery Studies on the Late Quaternary Activity of the Western Margin Fault of Gulu Basin, Tibet. Earthquake, 29(3): 45-53 (in Chinese with English abstract).
|
Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
|
Liu, Q. S., Wu, Z. H., Ye, P. S., et al., 2005. Isotopic Dating of the Nyainqentanglha Granite and Its Significance. Acta Geologica Sinica, 79(3): 331-337 (in Chinese with English abstract).
|
Liu, Z., 2014.The Forming Mechanism of Typical High-Temperature Geothermal Systems in Nimu-Naqu Geothermal Belt, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
|
Liu, Z., Lin, W. J., Zhang, M., et al., 2014. Geothermal Fluid Genesis and Mantle Fluids Contributions in Nimu-Naqu, Tibet. Earth Science Frontiers, 21(6): 356-371 (in Chinese with English abstract).
|
Nelson, K. D., Zhao, W. J., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274(5293): 1684-1688. https://doi.org/10.1126/science.274.5293.1684
|
Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24 (in Chinese with English abstract).
|
Qin, J. S., 2003. Hydrothermal Alteration and Evalution in Yangyi Geothermal Field. Journal of Taiyuan University of Technology, 34(2): 161-165 (in Chinese with English abstract).
|
Tong, W., Zhang, M. T., Zhang, Z. F., et al., 1981. Geothermals Beneath Xizang(Tibetan) Plateau. Science Press, Beijing, 18-19 (in Chinese).
|
Wang, J. Y., Pang, Z. H., Kong, Y. L., et al., 2020. Status and Prospects of Geothermal Clean Heating Industry in China. Science & Technology for Development, 16(S1): 294-298 (in Chinese with English abstract).
|
Wang, S. G., Chevalier, M. L., Pan, J. W., et al., 2020. Quantification of the Late Quaternary Throw Rates along the Yadong Rift, Southern Tibet. Tectonophysics, 790: 228545. https://doi.org/10.1016/j.tecto.2020.228545
|
Wu, Z. H., Hu, D. G., Liu, Q. S., et al., 2005. Chronological Analyses of the Thermal Evolution of Granite and the Uplift Process of the Nyainqentanglha Range in Central Tibet. Acta Geosicientia Sinica, 26(6): 505-512 (in Chinese with English abstract).
|
Wu, Z. H., Zhao, X. T., Wu, Z. H., et al., 2006a. Quaternary Geology and Faulting in the Damxung-Yangbajain Basin, Southern Tibet. Journal of Geomechanics, 12(3): 305-316 (in Chinese with English abstract).
|
Wu, Z. H., Wu, Z. H., Hu, D. G., et al., 2006b. Holocene Seismogenic Faults along the Tanggula-Lhasa Section of the Qinghai-Tibet Railway, China. Geological Bulletin of China, 25(12): 1387-1401 (in Chinese with English abstract).
|
Xu, S. G., Guo, Y. S., 2009. Geothermal Fundamentals. Science Press, Beijing, 19-21 (in Chinese).
|
Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract).
|
Zhang, M., Lin, W. J., Liu, Z., et al., 2014. Hydrogeochemical Characteristics and Genetic Model of Gulu High-Temperature Geothermal System in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392 (in Chinese with English abstract).
|
Zhao, W. J., Jiang, W., Wu, Z. H., et al., 2003. Study on Deep Structure-Seismic-Geothermal Relationship and Mechanism of Yangbajing in Tibet. Chinese Academy of Geological Sciences, Beijing, 95-97 (in Chinese).
|
Zhao, W. J., Zhao, X., Shi, D. N., et al., 2002. Progress in the Study of Deep (INDEPTH) Profiles in the Himalayas and Qinghai-Tibet Plateau. Regional Geology of China, 21(11): 691-700 (in Chinese with English abstract).
|
Zhao, Y. Y., Fan, X. T., Han, J. Y., et al., 2009. Geologic and Geochemical Features and Ore Forming Process for Hot Spring Cesium Deposit of Gulu Area, Nagqu Region, Tibet, China. Geological Bulletin of China, 28(7): 933-954 (in Chinese with English abstract).
|
Zhao, Y. Y., Zhao, X. T., Ma, Z. B., et al., 2010. Chronology of the Gulu Hot Spring Cesium Deposit in Nagqu, Tibet and It Geological Significance. Acta Geologica Sinica, 84(2): 211-220 (in Chinese with English abstract).
|
Zheng, K. Y., Zheng, F., 2020. Discussion on Prospects of Geothermal Power Generation Industry in China. Sino-Global Energy, 25(11): 17-23 (in Chinese with English abstract).
|
Zheng, M. P., Wang, Q. X., Duo, J., et al., 1995. A New Type of Hydrothermal Deposit-Cesium-Bearing Geyserite in Tibet. Geological Publishing House, Beijing, 27-32 (in Chinese with English abstract).
|
卞爽,于志泉,龚俊峰,等,2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制. 地质力学学报,27(2): 178-194.
|
陈以健,高钧成,冯锦江,等,1992. 藏南的水热活动历史初探. 水文地质工程地质,19(5): 18-21, 24.
|
多吉,2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学,5(1): 42-47.
|
郭清海,杨晨,2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学,46(7): 2544-2554.
|
和钟铧,杨德明,王天武,2007. 冈底斯带谷露区中新世花岗岩地球化学特征及构造环境. 吉林大学学报(地球科学版),37(1): 31-37.
|
胡志华,高洪雷,万汉平,等,2022. 西藏羊八井地热田水热蚀变的时空演化特征. 地质论评,68(1): 359-374.
|
黄嘉超,梁海军,谷雪曦,2021. 中国地热能发展形势及“十四五”发展建议. 世界石油工业,28(2): 41-46.
|
李振清,2002. 青藏高原碰撞造山过程中的现代热水活动(博士学位论文). 北京:中国地质科学院.
|
刘静,申旭辉,孟恺,等,2009. 谷露盆地西缘断裂晚第四纪活动初步研究. 地震,29(3): 45-53.
|
刘明亮, 何曈,吴启帆,等,2020. 雄安新区地热水化学特征及其指示意义. 地球科学,45(6): 2221-2231.
|
刘琦胜,吴珍汉,叶培盛,等,2005. 念青唐古拉花岗岩的同位素年龄测定及其地质意义. 地质学报,79(3): 331-337.
|
刘昭,2014. 西藏尼木‒那曲地热带典型高温地热系统形成机理研究(博士学位论文). 北京:中国地质科学院.
|
刘昭,蔺文静,张萌,等,2014. 西藏尼木‒那曲地热流体成因及幔源流体贡献. 地学前缘,21(6): 356-371.
|
庞忠和,胡圣标,汪集旸,2012. 中国地热能发展路线图. 科技导报,30(32): 18-24.
|
秦进生,2003. 西藏羊易地热田的水热蚀变及地热地质意义. 太原理工大学学报,34(2): 161-165.
|
佟伟,章铭陶,张知非,等,1981. 西藏地热. 北京:科学出版社,18-19.
|
汪集旸,庞忠和,孔彦龙,等,2020. 我国地热清洁取暖产业现状与展望. 科技促进发展,16(S1): 294-298.
|
吴珍汉,胡道功,刘琦胜,等,2005. 念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析. 地球学报,26(6): 505-512.
|
吴中海,赵希涛,吴珍汉,等,2006a. 西藏当雄‒羊八井盆地的第四纪地质与断裂活动研究. 地质力学学报,12(3): 305-316.
|
吴中海,吴珍汉,胡道功,等,2006b. 青藏铁路唐古拉山‒拉萨段全新世控震断裂研究. 地质通报,25(12): 1387-1401.
|
徐世光,郭远生,2009. 地热学基础. 北京:科学出版社,19-20.
|
徐梓矿,徐世光,张世涛,2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187.
|
张萌,蔺文静,刘昭,等,2014. 西藏谷露高温地热系统水文地球化学特征及成因模式. 成都理工大学学报(自然科学版),41(3): 382-392.
|
赵文津,江万,吴珍汉,等,2003. 西藏羊八井深部构造‒地震‒地热关系及机理调查研究. 北京:中国地质科学院, 95-97.
|
赵文津,赵逊,史大年,等,2002. 喜马拉雅和青藏高原深剖面(INDEPTH)研究进展. 地质通报,21(11): 691-700.
|
赵元艺,樊兴涛,韩景仪,等,2009. 西藏谷露热泉型铯矿床地质地球化学特征与成矿作用. 地质通报,28(7): 933-954.
|
赵元艺,赵希涛,马志邦,等,2010. 西藏谷露热泉型铯矿床年代学及意义. 地质学报,84(2): 211-220.
|
郑克棪,郑帆,2020. 中国地热发电产业前景探讨. 中外能源,25(11): 17-23.
|
郑绵平,王秋霞,多吉,等,1995. 水热成矿新类型: 西藏艳硅华矿床. 北京: 地质出版社,27-32.
|
感谢两位匿名审稿人和编委所提的建设性意见!
/
〈 |
|
〉 |