
Mechanism and Failure Mode of Tensile Strength Deterioration of Shikuosi Sandstone under Dry and Wet Cycling
Chen Zhao, Lan Hengxing, Liu Shijie, Du Kuijian
Mechanism and Failure Mode of Tensile Strength Deterioration of Shikuosi Sandstone under Dry and Wet Cycling
The dry-wet cycle has a serious impact on the grotto sandstone, causing a large number of cantilever cracking damages to the grottoes. Through indoor dry-wet cycle test, Brazil split test and strain field analysis methods, the strength and mechanical parameters of the sample under different numbers of dry-wet cycles are analyzed and studied. The internal friction angle φ, cohesive force c, microstructure, strain field characteristics The law of change. The study found that with the increase of the number of dry-wet cycles, clay minerals gradually lost and the structure became loose. The weakening of the cementation between mineral particles led to the decrease of the cohesive force c of sandstone. At the same time, due to the change of the particle shape and pore structure of the sandstone, the contact relationship between the particles was changed, which led to the reduction of the internal friction angle φ, and finally caused the deterioration of its tensile and fracture mechanical properties. Finally, combining the failure process and crack distribution of the sample, two failure modes of the grotto sandstone under different dry-wet cycles are summarized.
rock mechanics / wetting-drying cycles / grotto sandstone / tensile strength / deterioration mechanism
Deng, H.F., Li, J.L., Zhu, M., et al., 2012. Experimental Research on Strength Deterioration Rules of Sandstone under “Saturation-Air Dry” Circulation Function. Rock and Soil Mechanics, 33(11):3306-3312 (in Chinese with English abstract).
|
Du, M.P., Pan, P.Z., Ji, W.W., et al., 2016. Time-Space Laws of Failure Process of Carbonaceous Shale in Brazilian Split Test. Rock and Soil Mechanics, 37(12):3437-3446 (in Chinese with English abstract).
|
Feng, X.T., Lai, H.Z.H., 2000. Rock Fracturing Behaviors under Chemical Corrosion PartⅠ: Experimental Study. Chinese Journal of Rock Mechanics and Engineering, (4):403-407(in Chinese with English abstract).
|
Fu, Y., Wang, Z.J., Liu, X.R., et al., 2017. Meso Damage Evolution Characteristics and Macro Degradation of Sandstone under Wetting-Drying Cycles. Chinese Journal of Geotechnical Engineering, 39(9):1653-1661 (in Chinese with English abstract).
|
Hale,P.A.,Shakoor,A.,2003. A Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environmental and Engineering Geoscience, 9(2): 117-130. https://doi.org/10.2113/9.2.117
|
He, J., Wang, H., Eduardo Garzanti., 2020. Petrographic Analysis and Classification of Sand and Sandstone. Earth Science, 45(6):2186-2198 (in Chinese with English abstract).
|
Li, Z., Zhang, J.K., Liu, D., et al., 2019. Experimental Study on Indoor Simulated Deterioration of Sandstone of XiaofowanStatues at Dazu Rock Carvings. Chinese Journal of Geotechnical Engineering, 41(8):1513-1521 (in Chinese with English abstract).
|
Liu, S.J., Lan, H.X., Bao, H., et al., 2022. Classification System of Typical Engineering Geological Deformation and Failure Modes in Grottoes. Earth Science, 1-14(in Chinese with English abstract).
|
Liu, X.R., Li, D.L., Zhang, L., 2016. Influence of Wetting-Drying Cycles on Mechanical Properties and Microstructure of Shaly Sandstone. Chinese Journal of Geotechnical Engineering,38(7):1291-1300 (in Chinese with English abstract).
|
Martin, C.D., Chandler, N.A., 1994. The Progressive Fracture of Lac Du Bonnet Granite. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 31(6):643-659. https://doi.org/10.1016/0148-9062(94)90005-1
|
Song, Y.J., Zhang, L.T., Ren, J.X., et al., 2019. Study on Damage Characteristics of Weak Cementation Sandstone under Drying-Wetting Cycles Based on Nuclear Magnetic resonance technique. Chinese Journal of Rock Mechanics and Engineering, 38(4):825-831 (in Chinese with English abstract).
|
Sumner, P. D., Loubser, M. J., 2008. Experimental Sandstone Weathering Using Different Wetting and Drying Moisture Amplitudes. Earth Surface Processes and Landforms, 33(6): 985-990. https://doi.org/10.1002/esp.1586
|
Sun, J., Ling, J.M., Jia, G., et al., 2001. The Long-You Grottoes in the Western Land of Zhejiang Province from the View Point of Engineering Science. Chinese Journal of Rock Mechanics and Engineering,20(1): 131-133 (in Chinese).
|
Sun, Q., Zhang, Y. L., 2018. Combined Effects of Salt, Cyclic Wetting and Drying Cycles on the Physical and Mechanical Properties of Sandstone. Engineering Geology, 248(1): 70-79. https://doi.org/10.1016/j.enggeo.2018.11.009
|
Sun, W.J., Jin, A.B., Wang, S.L., et al.,2021.Study on Sandstone Split Mechanical Properties under High Temperature Based on the DIC Technology. Rock and Soil Mechanics,42(2): 511-518 (in Chinese with English abstract).
|
Tang, L.S., Wang, S.J., 1999. Progress in the Study on Mechanical Effect of the Chemical Action of Water-Rock on Deformation and Failure of Rocks. Advances in Earth Sciences, 14(5):433-439 (in Chinese with English abstract).
|
Tang, L.S., Wang, S.J., 2002. Analysis on Mechanism and Quantitative Methods of Chemical Damage in Water-Rock Interaction. Chinese Journal of Rock Mechanics and Engineering, 21(3):314-319 (in Chinese with English abstract).
|
Wang, D.Y., Zhang, Z.X., Fu, L.C., et al., 1994.Analyses of Factors Affecting Destruction of Rockmass by Weathering in Baodingshan Grotto. Journal of Engineering Geology, 39(5):912-926 (in Chinese with English abstract).
|
Wang, G.L., Wu, F.Q., Qi, S.W., 2012. Research on Failure Mechanisms for Cantilever and Tension Crack-Type Collapse. Rock and Soil Mechanics, 33(S2): 269-274(in Chinese with English abstract).
|
Wang, H., Li, Y., Cao, S.G., et al., 2020. Brazilian Splitting Test Study on Crack Propagation Process and Macroscopic Failure Mode of Pre-Cracked Black Shale. Chinese Journal of Rock Mechanics and Engineering,39(5):912-926 (in Chinese with English abstract).
|
Wen, T., Zang, X., Sun, J.S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science,46(9):3385-3396 (in Chinese with English abstract).
|
Xu, Y.C., Li, K.Q., Xie, X.F., et al., 2017. Grouting Reinforcement of Fractured Rock Mass Based on Damage Mechanics. Journal of Xi’an University of Science and Technology, 37(1):26-31 (in Chinese with English abstract).
|
Yang, Z.F., Wang, S.J., Xu, B., et al., 2000. Analysis of the Engineering Geological Conditions of Longyou Stone Caves and Primary Study on the Protection Strategies. Journal of Engineering Geology,(3):291-295(in Chinese with English abstract).
|
Yuan, P., Ma, Q.Y., 2013. Split Hopkinson Pressure Bar Tests on Sandstone in Coalmine under Cyclic Wetting and Drying.Rock and Soil Mechanics, (9):2557-2562(in Chinese with English abstract).
|
Zhang, H. Q., Tannant, D. D., Jing, H. W., et al., 2015. Evolution of Cohesion and Friction Angle during Microfracture Accumulation in Rock. Natural Hazards, 77(1): 497-510. https://doi.org/10.1007/s11069-015-1592-2
|
Zhang, Z. H., Chen, X. C., Yao, H. Y., et al., 2021. Experimental Investigation on Tensile Strength of Jurassic Red-Bed Sandstone under the Conditions of Water Pressures and Wet-Dry Cycles. KSCE Journal of Civil Engineering, 25(7): 2713-2724. https://doi.org/10.1007/s12205-021-1404-z
|
Zhao, N., Wang, L.G., Xi, Y.H., 2015.Experiment Study of Crack Propagation and Strain Evolution of Brazil Disc Mudstone Specimen. Journal of Experimental Mechanics, 30(6):791-796 (in Chinese with English abstract).
|
Zhou, P.G., 1996.Engineering Geomechanics Research on the Interaction Between Groundwater and Rock-Soil Medium. Earth Sciene Frontiers, (2):176. (in Chinese).
|
邓华锋,李建林,朱敏,等,2012.饱水-风干循环作用下砂岩强度劣化规律试验研究.岩土力学,33(11):3306-3312.
|
杜梦萍,潘鹏志,纪维伟,等,2016.炭质页岩巴西劈裂载荷下破坏过程的时空特征研究.岩土力学,37(12):3437-3446.
|
冯夏庭,赖户政宏,2000.化学环境侵蚀下的岩石破裂特性——第一部分:试验研究.岩石力学与工程学报,(4):403-407.
|
傅晏,王子娟,刘新荣,等,2017.干湿循环作用下砂岩细观损伤演化及宏观劣化研究.岩土工程学报,39(9):1653-1661.
|
何杰,王华,Eduardo Garzanti,2020.砂岩(砂)的岩相分析和分类标准.地球科学,45(6):2186-2198.
|
李震,张景科,刘盾,等,2019.大足石刻小佛湾造像砂岩室内模拟劣化试验研究.岩土工程学报,41(8):1513-1521.
|
刘世杰,兰恒星,包含,等,2022.石窟寺典型工程地质变形破坏模式及分类体系.地球科学,:1-14.
|
刘新荣,李栋梁,张梁,等,2016.干湿循环对泥质砂岩力学特性及其微细观结构影响研究.岩土工程学报,38(7):1291-1300.
|
宋勇军,张磊涛,任建喜,等,2019.基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究.岩石力学与工程学报,38(4):825-831.
|
孙钧,凌建明,贾岗,等,2001.从工程科学角度看浙西大地的龙游石窟.岩石力学与工程学报,20(1):131-133.
|
孙文进,金爱兵,王树亮,等,2021.基于DIC的高温砂岩劈裂力学特性研究.岩土力学,42(2):511-518.
|
汤连生,王思敬,1999.水—岩化学作用对岩体变形破坏力学效应研究进展.地球科学进展,14(5):433-439.
|
汤连生,王思敬,2002.岩石水化学损伤的机理及量化方法探讨. 岩石力学与工程学报,21(3):314-319.
|
汪东云,张赞勋,付林森,等,1994.宝顶山石窟岩体风化破坏的作用因素分析.工程地质学报,(2):54-65.
|
王根龙,伍法权,祁生文,2012.悬臂-拉裂式崩塌破坏机制研究.岩土力学,33(S2):269-274.
|
王辉,李勇,曹树刚,等,2020.含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究.岩石力学与工程学报,39(5):912-926.
|
温韬,张馨,孙金山,等,2021.基于峰前和峰后能量演化特征的岩石脆性评价.地球科学,46(9):3385-3396.
|
许延春,李昆奇,谢小锋,等,2017.裂隙岩体损伤的注浆加固效果试验.西安科技大学学报,37(1):26-31.
|
杨志法,王思敬,许兵,等,2000.龙游石窟群工程地质条件分析及保护对策初步研究.工程地质学报,(3):291-295.
|
袁璞,马芹永,2013.干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究.岩土力学, (9):2557-2562.
|
赵娜,王来贵,习彦会,2015.巴西圆盘泥岩试件裂纹扩展及应变演化实验研究.实验力学,30(6):791-796.
|
周平根,1996.地下水与岩土介质相互作用的工程地质力学研究.地学前缘,(2):176.
|
/
〈 |
|
〉 |