Crustal Tectonic Evolution of Tanlu Fault Zone (Southern Segment) and Adjacent Areas under the Background of Extension:Evidences from Teleseismic Receiver Function

Chen Hao, Li Hongxing, Hong Dequan, Han Rubing, Wang Xiangteng, Deng Juzhi, Li Guang, Gong Meng, Huang Guangnan, Sheng Shuzhong

PDF(3351 KB)
PDF(3351 KB)
Earth Science ›› 2023, Vol. 48 ›› Issue (08) : 2905-2914. DOI: 10.3799/dqkx.2022.055

Crustal Tectonic Evolution of Tanlu Fault Zone (Southern Segment) and Adjacent Areas under the Background of Extension:Evidences from Teleseismic Receiver Function

Author information +
History +

Abstract

For the more thorough understanding of the crustal structure and evolution of Tanlu fault under extension background since early Cretaceous,we completed a study about crustal thickness and Poisson's ratio of Tanlu fault zone (southern segment) and adjacent Areas by P-wave receiver function. The results of H-κ showed the Lower Yangtze block’s crust is relatively thinner and more severe deformation than the North China block’s in study area. The average Poisson's ratio beneath Tanlu fault zone exhibited lower value feature. The result of migration revealed a crustal thinning deformation beneath the Tanlu fault zone, and a significant differences on thinning dip angle of Moho toward the Tanlu fault zone on both sides of the fault zone. Furthermore, The model of Asymmetrical extension could well explain the crustal evolution of southern segment of the Tanlu fault zone and its adjacent regions under extension background since early Cretaceous.

Key words

receiver function / crustal deformation / Tanlu fault zone / Cretaceous continental extension / structural geology

Cite this article

Download Citations
Chen Hao , Li Hongxing , Hong Dequan , et al . Crustal Tectonic Evolution of Tanlu Fault Zone (Southern Segment) and Adjacent Areas under the Background of Extension:Evidences from Teleseismic Receiver Function. Earth Science. 2023, 48(08): 2905-2914 https://doi.org/10.3799/dqkx.2022.055

References

Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134-135(52): 304-316. https://doi.org/10.1016/j.lithos. 2011. 09.013
Chen, L., Wen, L. X., Zheng, T. Y., 2005. A Wave Equation Migration Method for Receiver Function Imaging: 2. Application to the Japan Subduction Zone. Journal of Geophysical Research: Solid Earth, 110(B11). https://doi.org/10.1029/2005jb003666
Christensen, N. I., 1996. Poisson's Ratio and Crustal Seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139-3156. https://doi.org/10.1029/95jb03446
Gu, Q. P., Ding, Z. F., Kang, Q. Q,. et al., 2020.Group Velocity Tomography of Rayleigh Wave in the Middle-Southern Segment of the Tan-Lu Fault Zone and Adjacent Regions Using Ambient Seismic Noise. Chinese J. Geophys.,63(4):1505-1522 (in Chinese with English abstract).
Hong, D. Q., Huang, X. L., Yang, Y., et al., 2021. Lateral Variation in Moho Depth around the Southern Tanlu Fault Zone and its Adjacent Area. Earthquake Science, 34(1): 77-87. https://doi.org/10.29382/eqs-2020-0063
Ji, S. C., Wang, X.,Yang, W. C., 2009. Correlation between Crustal Thickness and Poisson's Ratio in the North China Craton and Its Implication for Lithospheric Thinning. Acta Geologica Sinica,83(3):324-330 (in Chinese with English Abstract).
Lei, J. S., Zhao, D. P., Xu, X. W., et al., 2020. P-Wave Upper-Mantle Tomography of the Tanlu Fault Zone in Eastern China. Physics of the Earth and Planetary Interiors, 299(2): 106402. https://doi.org/10.1016/j.pepi.2019.106402
Li, C., Yao, H. J., Yang, Y., et al., 2020. 3-D Shear Wave Velocity Structure in the Shallow Crust of the Tanlu Fault Zone in Lujiang, Anhui, and Adjacent Areas, and its Tectonic Implications. Earth and Planetary Physics, 4(2): 1-12. https://doi.org/10.26464/epp2020026
Li, T. T., Liu, L., Fan, W. H., et al., 2020. Crustal Thickness and Ratio of Poisson in Jiangsu Area by Teleseismic Receiver Function. Journal of seismological research,196(4),82-90(in Chinese with English Abstract).
Li, S. G., He, Y. S., Wang, S. J., 2013. Process and Mechanism of Mountain-Root Removal of the Dabie Orogen: Constraints from Geochronology and Geochemistry of Post-Collisional Igneous Rocks. Chinese Science Bulletin, 58(35): 4411-4417. https://doi.org/10.1007/s11434-013-6065-y
Ligorría, J. P., Ammon, C. J., 1999. Iterative Deconvolution and Receiver-Function Estimation. Bulletin of the Seismological Society of America, 89(5): 1395-1400. https://doi.org/10.1785/bssa0890051395
Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of >120 km of Archaean Lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publications, 76(1): 71-81. https://doi.org/10.1144/gsl.sp.1993.076.01.04
Niu, M. L., Zhu, G., Xie C. L.,et al.,2008. LA-ICP MS Zircon U-Pb Ages of the Granites from the Southern Segment of the Zhangbaling Uplift Along the Tan-Lu Fault Zone and their Tectonic Significances. Acta Petrologica Sinica,24(8):1839-1847 (in Chinese with English Abstract).
Niu, M. L., Zhu, G., Xie, C. L.,et al., 2010. Geochemistry of Late Mesozoic Intrusions from the Southern Segment of Zhangbaling Uplift Along the Tan-Lu Fault Zone and Its Implications for the Lithospheric Thinning.Acta Petrologica Sinica,26(9):2783-2804 (in Chinese with English Abstract).
Qiu,Z.L.,2009. Geochemistry and Hf Isotopes of Zircon Megacrysts in Cenozoic Basalts along Eastern China and Its Implications for Crust-Mantle Nteraction beneath Subcontinental Lithosphere Mantle Geochemistry and Hf Isotopes of Zircon Megacrysts in Cenozoic Basalts along Eastern China and Its Implications for Crust-Mantle Nteraction beneath Subcontinental Lithosphere Mantle(Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
Sun, W. J., Kennett, B. L. N., 2016. Uppermost Mantle Structure beneath Eastern China and its Surroundings from Pn and Sn Tomography. Geophysical Research Letters, 43(7): 3143-3149. https://doi.org/10.1002/2016gl068618
Shi,W. J., Wei, J. H., Tan, J., et al., 2014. Late Early Cretaceous Gold Mineralization in Tan-Lu Fault Zone: Evidence from Rb-Sr Isotopic Dating of Pyrite from Longquanzhan Gold Deposit. Earth Science,39(3):325-340 (in Chinese with English Abstract).
Wang, F., Wang, Q., Lin, W., et al., 2014. 40Ar/39Ar Geochronology of the North China and Yangtze Cratons: New Constraints on Mesozoic Cooling and Cratonic Destruction Under East Asia. Journal of Geophysical Research Solid Earth,119(4):3700-3721.https://doi.org/org/10.1002/2013JB010708
Wang, W., Zhu, G., Zhang. S.,et al., 2017. Detrital Zircon Evidence for Depositional Time and Provenance of Mesozoic Sediments in the Hefei Basin. Geol. Rev.,63:956-977 (in Chinese with English Abstract).
Wei, Z. G., Chu, R. S., Chen, L., et al., 2020. Crustal Structure in the Middle-Southern Segments of the Tanlu Fault Zone and Adjacent Regions Constrained by Multifrequency Receiver Function and Surface Wave Data. Physics of the Earth and Planetary Interiors, 301(4): 106470. https://doi.org/10.1016/j.pepi.2020.106470
Xu X., Gao S.L., Wang X.J., et al., 2015. Cenozoic Deformation of Extensional Tectonics in the Lower Yangtze Region and Its Tectonic Significance. Earth Science,40(12):1968-1986 (in Chinese with English Abstract).
Zhang,Y.Q.,Dong, S.W., 2008.Mesozoic Tectonic Evolution History of the Tan-Lu Fault Zone,China: Advances and new under standing.Geological Bulletin China,27(9):1371-1390 (in Chinese with English Abstract).
Zhang, Y. P.,Wang, B. S., Xu, T., et al., 2020. Three-Dimensional Crustal V p and V s Structures beneath the Southern Segment of the Tan-Lu Fault Revealed by Active Source and Earthquake Data. Geophysical Journal International, 223(3): 2148-2165. https://doi.org/10.1093/gji/ggaa314
Zhao, F. Y., Jiang, S. H., An, S., et al., 2020. Correlation of Lithospheric “De-Rooting” of the Sulu-Dabie Orogen to Tectonic-Sedimentary Process of the Hefei Basin: Constraints from Mesozoic Coupling of Basin and Orogen. Geological Journal, 55(1): 694-711. https://doi.org/10.1002/gj.3431
Zhao, L., Allen, R. M., Zheng, T. Y., et al., 2012. High-Resolution Body Wave Tomography Models of the Upper Mantle beneath Eastern China and the Adjacent Areas. Geochemistry, Geophysics, Geosystems, 13(6): Q06007. https://doi.org/10.1029/2012gc004119
Zheng, H. W., Li, T. D., Su G., 2020a. Tomography Images of Crustal and Upper Mantle Structure beneath Sulu Orogenic Belt. Earth Science, 45(7): 2485-2494(in Chinese with English abstract).
Zheng, H. W., Li, T. D., He R. Z., 2020b. Southeastward Subduction of North China Block: Insights from Tomographyic Image of the Middle and Lower Yangtze River Metallogenic Belt. Earth Science, 45(11): 4187-4197(in Chinese with English Abstract).
Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences,61:353-385 (in Chinese).
Zhu, G., Jiang, D. Z., Zhang, B. L., et al., 2012. Destruction of the Eastern North China Craton in a Backarc Setting: Evidence from Crustal Deformation Kinematics. Gondwana Research, 22(1): 86-103. https://doi.org/10.1016/j.gr.2011.08.005
Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint From Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61: 386-405 (in Chinese).
Zhu, G., Wang, Y. S., Wang, W., et al., 2017. An Accreted Micro-Continent in the North of the Dabie Orogen, East China: Evidence from Detrital Zircon Dating. Tectonophysics, 698(2): 47-64. https://doi.org/10.1016/j.tecto.2017.01.004
Zhu, L. P., Kanamori, H., 2000. Moho Depth Variation in Southern California from Teleseismic Receiver Functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980. https://doi.org/10.1029/1999jb900322
Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Sci China Earth Sci.,42(8),1135-1159(in Chinese).
顾勤平,丁志峰,康清清,等,2020. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像.地球物理学报,63(4):1505-1522.
李婷婷,刘利,范文华,等, 2020. 基于远震p波接收函数研究江苏地区地壳厚度和泊松比.地震研究, 196(4): 82-90.
嵇少丞,王茜,杨文采,2009.华北克拉通泊松比与地壳厚度的关系及其大地构造意义.地质学报,83(3):324—330.
邱志力,2009. 中国东部新生代碱性玄武岩有关锆石巨晶地球化学和Hf同位素:成因及其与大陆岩石圈壳-幔作用研究(博士毕业论文).杭州: 浙江大学,156-160.
石文杰, 魏俊浩, 谭俊, 等, 2014. 郯庐断裂带晚白垩世金成矿作用: 来自龙泉站金矿床黄铁矿Rb-Sr年代学证据. 地球科学, 39(3): 325-340.
牛漫兰, 朱光, 谢成龙, 等, 2008. 郯庐断裂带张八岭隆起南段花岗岩LA-ICP MS锆石U-Pb年龄及其构造意义. 岩石学报,24(08):1839-1847.
牛漫兰, 朱光, 谢成龙, 等, 2010. 郯庐断裂带张八岭隆起南段晚中生代侵入岩地球化学及其对岩石圈. 岩石学报, 26(9):2783-2804.
徐曦, 高顺莉, 王兴建,等, 2015. 下扬子区新生代伸展构造变形及其区域构造意义. 地球科学, 40(12): 1968-1986.
王薇, 朱光, 张帅, 等, 2017. 合肥盆地中生代地层时代与源区的碎屑锆石证据.地质论评,63(4):956-977.
张岳桥,董树文,2008.郯庐断裂带中生代构造演化史:进展与新认识.地质通报,27(9):1371-1390.
郑洪伟, 李廷栋, 苏刚, 2020a. 苏鲁造山带地壳上地幔结构层析成像研究.地球科学, 45(7):2485-2494.
郑洪伟, 李廷栋, 贺日政, 2020b. 长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲. 地球科学, 45(11):4187-4197.
郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏.中国科学:地球科学,48(4):379-414.
朱光, 刘程, 顾承串, 等, 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示. 中国科学: 地球科学,48:415-435.
朱日祥, 徐义刚, 朱光, 等, 2012.华北克拉通破坏.中国科学:地球科学,42(8):1135-1159.

本次研究所使用程序为圣路易斯大学朱露培教授与中国科学院地质与地球物理研究所陈凌教授的hk和PSDM程序.感谢安徽省地震局提供研究数据.同时感谢崇美艺术工作室邵思文女士为本文制作精美模型图件.感谢审稿专家为本文提出的宝贵意见.

Comments

PDF(3351 KB)

Accesses

Citation

Detail

Sections
Recommended

/