Research advances in the role of CD8+ T cells in the tumor microenvironment of endometrial cancer

Hu Yu, Wei Hua, Zhou Zhou, Zhang Sanyuan

PDF(585 KB)
PDF(585 KB)
Journal of Chongqing Medical University ›› 2025, Vol. 50 ›› Issue (05) : 589-594. DOI: 10.13406/j.cnki.cyxb.003765
Precision Medicine in Cancer and Translational Studies

Research advances in the role of CD8+ T cells in the tumor microenvironment of endometrial cancer

Author information +
History +

Abstract

Endometrial cancer(EC) is one of the common malignant tumors of the female reproductive system,and the conventional treatment methods including surgery and radiochemotherapy have a limited therapeutic effect. CD8+ T cells are the main effector cells in tumor microenvironment(TME) and are also the main target cells for immunotherapy that have emerged in recent years. This article briefly elaborates on the cytotoxic effect of CD8+T cells in TME through the three pathways of the perforin-granzyme pathway,the FAS pathway,and the secretion of cytokines,and the changes in the peripheral environment of patients with EC may affect the functions of CD8+ T cells. This article also summarizes the application of CD8+ T cells as the targets for EC treatment,in order to provide new ideas for clinical treatment.

Key words

CD8+ T cells / endometrial cancer / tumor environment

Cite this article

Download Citations
Hu Yu , Wei Hua , Zhou Zhou , et al. Research advances in the role of CD8+ T cells in the tumor microenvironment of endometrial cancer. Journal of Chongqing Medical University. 2025, 50(05): 589-594 https://doi.org/10.13406/j.cnki.cyxb.003765

References

1
Amant F Moerman P Neven P,et al. Endometrial cancer[J]. Lancet2005366(9484):491-505.
2
陈晓军,张剑峰,陆 雯,等. 子宫内膜癌手术治疗质量控制与评价标准中国专家共识(2024年版)[J]. 中国实用妇科与产科杂志202440(6):626-637.
Chen XJ Zhang JF Lu W,et al. Chinese expert consensus on quality control and quality indicators forsurgical treatment of endometrial carcinoma(2024 edition)[J]. Chin J Pract Gynecol Obstet202440(6):626-637.
3
Thommen DS Schumacher TN. T cell dysfunction in cancer[J]. Cancer Cell201833(4):547-562.
4
纪 元,陈明洋. CD8+T细胞在肿瘤免疫中的研究进展[J]. 解剖科学进展202430(4):440-442.
Ji Y Chen MY. Research progress of CD8+T cells in tumor immunity[J]. Prog Anat Sci202430(4):440-442.
5
Obar JJ Lefrançois L. Memory CD8+T cell differentiation[J]. Ann N Y Acad Sci20101183:251-266.
6
Dolina JS Van Braeckel-Budimir N Thomas GD,et al. CD8+T cell exhaustion in cancer[J]. Front Immunol202112:715234.
7
Golstein P Griffiths GM. An early history of T cell-mediated cytotoxicity[J]. Nat Rev Immunol201818(8):527-535.
8
Patel MV Shen Z Rodriguez-Garcia M,et al. Endometrial cancer suppresses CD8+T cell-mediated cytotoxicity in postmenopausal women[J]. Front Immunol202112:657326.
9
Workel HH Komdeur FL Wouters MCA,et al. CD103 defines intraepithelial CD8+ PD1+tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma[J]. Eur J Cancer201660:1-11.
10
Jung IK Kim SS Suh DS,et al. Tumor-infiltration of T-lymphocytes is inversely correlated with clinicopathologic factors in endometrial adenocarcinoma[J]. Obstet Gynecol Sci201457(4):266-273.
11
Montfort A Colacios C Levade T,et al. The TNF paradox in cancer progression and immunotherapy[J]. Front Immunol201910:1818.
12
Aqbi HF Wallace M Sappal S,et al. IFN-γ orchestrates tumor elimination,tumor dormancy,tumor escape,and progression[J]. J Leukoc Biol2018103(6):1219.
13
Rodriguez-Garcia M Shen Z Fortier JM,et al. Differential cytotoxic function of resident and non-resident CD8+T cells in the human female reproductive tract before and after menopause[J]. Front Immunol202011:1096.
14
Yang J Yan J Liu BR. Targeting VEGF/VEGFR to modulate antitumor immunity[J]. Front Immunol20189:978.
15
Asaka S Yen TT Wang TL,et al. T cell-inflamed phenotype and increased Foxp3 expression in infiltrating T-cells of mismatch-repair deficient endometrial cancers[J]. Mod Pathol201932(4):576-584.
16
Musacchio L Boccia SM Caruso G,et al. Immune checkpoint inhibitors:a promising choice for endometrial cancer patients?[J]. J Clin Med20209(6):1721.
17
Bruno V Corrado G Baci D,et al. Endometrial cancer immune escape mechanisms:let us learn from the fetal-maternal interface[J]. Front Oncol202010:156.
18
Mulati K Hamanishi J Matsumura N,et al. VISTA expressed in tumour cells regulates T cell function[J]. Br J Cancer2019120(1):115-127.
19
Karpathiou G Chauleur C Mobarki M,et al. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix[J]. Pathol Res Pract2020216(1):152782.
20
Ramos A Fortin SAM Melchert V,et al. Checkpoint inhibitor signatures across endometrial carcinoma histologic subtypes[J]. Gynecol Oncol2018149(3):621.
21
Oh MS Chae YK. Deep and durable response with combination CTLA-4 and PD-1 blockade in mismatch repair(MMR)-proficient endometrial cancer[J]. J Immunother201942(2):51-54.
22
Anderson AC Joller N Kuchroo VK. Lag-3,tim-3,and TIGIT:co-inhibitory receptors with specialized functions in immune regulation[J]. Immunity201644(5):989-1004.
23
Rodriguez AC Blanchard Z Maurer KA,et al. Estrogen signaling in endometrial cancer:a key oncogenic pathway with several open questions[J]. Horm Cancer201910(2/3):51-63.
24
Kyrgiou M Kalliala I Markozannes G,et al. Adiposity and cancer at major anatomical sites:umbrella review of the literature[J]. BMJ2017356:j477.
25
Shen Z Rodriguez-Garcia M Patel MV,et al. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity[J]. Sci Rep202111(1):1773.
26
Zhou WJ Zhang J Xie F,et al. CD45RO-CD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis[J]. Theranostics202111(11):5330-5345.
27
Tumeh PC Harview CL Yearley JH,et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature2014515(7528):568-571.
28
Robert C Schachter J Long GV,et al. Pembrolizumab versus ipilimumab in advanced melanoma[J]. 2015372(26):2521-2532.
29
Barber DL John Wherry E Masopust D,et al. Restoring function in exhausted CD8 T cells during chronic viral infection[J]. Nature2006439(7077):682-687.
30
Knisely A Hinchcliff E Fellman B,et al. Phase 1b study of intraperitoneal ipilimumab and nivolumab in patients with recurrent gynecologic malignancies with peritoneal carcinomatosis[J]. Med20245(4):311-320.
31
Sadelain M. CD19 CAR T Cells [J]. Cell2017171(7):1471.
32
Maus MV Plotkin J Jakka G,et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity[J]. Mol Ther Oncolytics20173:1-9.
33
Shank BR Do B Sevin A,et al. Chimeric antigen receptor T cells in hematologic malignancies[J]. Pharmacotherapy201737(3):334-345.
34
Petersen CT Krenciute G. Next generation CAR T cells for the immunotherapy of high-grade glioma[J]. Front Oncol20199:69.
35
Barrett DM Grupp SA June CH. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street[J]. J Immunol2015195(3):755-761.
36
Landoni E Savoldo B. Treating hematological malignancies with cell therapy:where are we now?[J]. Expert Opin Biol Ther201818(1):65-75.
37
Gargett T Yu WB Dotti G,et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade[J]. Mol Ther201624(6):1135-1149.
38
Tchou J Zhao YB Levine BL,et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor(CAR) T cells in metastatic breast cancer[J]. Cancer Immunol Res20175(12):1152-1161.
39
Choi JY Kim TJ. The current status and future perspectives of chimeric antigen receptor-engineered T cell therapy for the management of patients with endometrial cancer[J]. Curr Issues Mol Biol202345(4):3359-3374.
40
Ma XY Wang QM Sun CG,et al. Targeting TCF19 sensitizes MSI endometrial cancer to anti-PD-1 therapy by alleviating CD8+ T cell exhaustion via TRIM14-IFN-β axis[J]. Cell Rep202342(8):112944.
41
Salas-Benito D Pérez-Gracia JL Ponz-Sarvisé M,et al. Paradigms on immunotherapy combinations with chemotherapy[J]. Cancer Discov202111(6):1353-1367.
42
Sakaguchi S Mikami N Wing JB,et al. Regulatory T cells and human disease[J]. Annu Rev Immunol202038:541-566.
43
Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res20175(1):3-8.
44
Barber EL Chen SQ Pineda MJ,et al. Clinical and biological activity of chemoimmunotherapy in advanced endometrial adenocarcinoma:a phaseⅡ trial of the big ten cancer research consortium[J]. Cancer Res Commun20222(10):1293-1303.
45
Patel SP Alonso-Gordoa T Banerjee S,et al. Phase 1/2 study of monalizumab plus durvalumab in patients with advanced solid tumors[J]. J Immunother Cancer202412(2):e007340.
46
Lee L Matulonis U. Immunotherapy and radiation combinatorial trials in gynecologic cancer:a potential synergy?[J]. Gynecol Oncol2019154(1):236-245.
47
Walle T Monge RM Cerwenka A,et al. Radiation effects on antitumor immune responses:current perspectives and challenges[J]. Ther Adv Med Oncol201810:1758834017742575.
48
Tuyaerts S Van Nuffel AMT Naert E,et al. PRIMMO study protocol:a phase Ⅱ study combining PD-1 blockade,radiation and immunomodulation to tackle cervical and uterine cancer[J]. BMC Cancer201919(1):506.

Comments

PDF(585 KB)

Accesses

Citation

Detail

Sections
Recommended

/