Progress in protein ubiquitination

Zhou Menghan, Yang Yiping, Wang Shan

PDF(941 KB)
PDF(941 KB)
Journal of Chongqing Medical University ›› 2024, Vol. 49 ›› Issue (10) : 1045-1050. DOI: 10.13406/j.cnki.cyxb.003604
Review

Progress in protein ubiquitination

Author information +
History +

Abstract

Ubiquitination is one of the ways of post-translational modification in proteins,which performs mainly through seven lysine residues(K6,K11,K27,K29,K33,K48,K63) and one methionine residue(M1) of ubiquitin. It has been found that different ubiquitin linkages play important roles in regulating proteasomal degradation,DNA damage response,and antiviral immunity response. In this review,the roles of different types of ubiquitination modifications in tumorigenesis and viral infection,and the underline molecular mechanisms in recent years are summarized,aiming to provide reference for the functional study of different ubiquitin modification.

Key words

ubiquitination / ubiquitin modification / tumor / viral infection

Cite this article

Download Citations
Zhou Menghan , Yang Yiping , Wang Shan. Progress in protein ubiquitination. Journal of Chongqing Medical University. 2024, 49(10): 1045-1050 https://doi.org/10.13406/j.cnki.cyxb.003604

References

1
Zheng N Shabek N. Ubiquitin ligases:structure,function,and regulation[J]. Annu Rev Biochem201786:129-157.
2
Tracz M Bialek W. Beyond K48 and K63:non-canonical protein ubiquitination[J]. Cell Mol Biol Lett202126(1):1.
3
Haakonsen DL Rape M. Branching out:improved signaling by heterotypic ubiquitin chains[J]. Trends Cell Biol201929(9):704-716.
4
Mooney EC Sahingur SE. The ubiquitin system and A20:implications in health and disease[J]. J Dent Res2021100(1):10-20.
5
Abdul-Sater AA Edilova MI Clouthier DL,et al. The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease[J]. Nat Immunol201718(1):26-35.
6
Zuo YB Feng Q Jin LC,et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling[J]. Nat Commun202011(1):1146.
7
Wang Q Xu C Cai RJ,et al. Fbxo45-mediated NP-STEP46 degradation via K6-linked ubiquitination sustains ERK activity in lung cancer[J]. Mol Oncol202216(16):3017-3033.
8
Yang Y Zhu YF Zhou S,et al. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis[J]. EMBO J202241(14):e109777.
9
Yuan YK Miao Y Qian LP,et al. Targeting UBE4A revives viperin protein in epithelium to enhance host antiviral defense[J]. Mol Cell202077(4):734-747.
10
Baranes-Bachar K Levy-Barda A Oehler J,et al. The ubiquitin E3/E4 ligase UBE4A adjusts protein ubiquitylation and accumulation at sites of DNA damage,facilitating double-strand break repair[J]. Mol Cell201869(5):866-878.
11
Zhang ZM Wang DD Wang PY,et al. OTUD1 negatively regulates type I IFN induction by disrupting noncanonical ubiquitination of IRF3[J]. J Immunol2020204(7):1904-1918.
12
Paul A Wang B. RNF8- and Ube2S-dependent ubiquitin lysine 11-linkage modification in response to DNA damage[J]. Mol Cell201766(4):458-472.
13
Li ZY Wang Y Li YD,et al. Ube2S stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development[J]. Cell Death Dis20189(5):456.
14
Peng SM Chen X Huang CY,et al. UBE2S as a novel ubiquitinated regulator of p16 and β-catenin to promote bone metastasis of prostate cancer[J]. Int J Biol Sci202218(8):3528-3543.
15
Xiao KH Peng SM Lu JL,et al. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer[J]. Cell Death Dis202314(7):408.
16
Zhou WH Xu J Li HM,et al. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage[J]. Clin Cancer Res201723(4):1104-1116.
17
Zhang SZ You XH Zheng YW,et al. The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor suppressor cascade in lung cancer cells[J]. J Clin Invest2023133(4):e162434.
18
Tang FY Gao RZ Jeevan-Raj B,et al. LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function[J]. Nat Commun201910(1):5755.
19
Sparrer KMJ Gableske S Zurenski MA,et al. TRIM23 mediates virus-induced autophagy via activation of TBK1[J]. Nat Microbiol20172(11):1543-1557.
20
Wu YX Jin SH Liu QX,et al. Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression[J]. Autophagy202117(6):1379-1392.
21
Chattopadhyay S Kuzmanovic T Zhang Y,et al. Ubiquitination of the transcription factor IRF-3 activates RIPA,the apoptotic pathway that protects mice from viral pathogenesis[J]. Immunity201644(5):1151-1161.
22
Zhao XB Zhu HH Yu J,et al. C-Cbl-mediated ubiquitination of IRF3 negatively regulates IFN-β production and cellular antiviral response[J]. Cell Signal201628(11):1683-1693.
23
Ma J Zhou YK Pan PL,et al. TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks[J]. Nat Commun202314(1):1810.
24
Chen YH Chen HH Wang WJ,et al. TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation[J]. Nat Commun202314(1):3050.
25
Fan LL Xu SH Zhang FB,et al. Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells[J]. Cell Death Dis202011(4):214.
26
He X Zhu YJ Zhang YH,et al. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation[J]. EMBO J201938(14):e100978.
27
Deng TJ Hu BL Wang XB,et al. TRAF6 autophagic degradation by avibirnavirus VP3 inhibits antiviral innate immunity via blocking NFKB/NF-κB activation[J]. Autophagy202218(12):2781-2798.
28
Nibe Y Oshima S Kobayashi M,et al. Novel polyubiquitin imaging system,PolyUb-FC,reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62[J]. Autophagy201814(2):347-358.
29
Abe T Umeki I Kanno SI,et al. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases[J]. Cell Death Differ202027(3):1023-1035.
30
Liao YN Liu Y Shao ZL,et al. A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance[J]. Oncogene202140(25):4291-4306.
31
Cui SZ Lei ZY Guan TP,et al. Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy[J]. Cancer Sci2020111(5):1567-1581.
32
Guo F Zhang C Wang FB,et al. Deubiquitinating enzyme USP33 restrains docetaxel-induced apoptosis via stabilising the phosphatase DUSP1 in prostate cancer[J]. Cell Death Differ202027(6):1938-1951.
33
Wang S Kollipara RK Humphries CG,et al. The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer[J]. Oncotarget20167(40):64921-64931.
34
Wang S Kollipara RK Srivastava N,et al. Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer[J]. Proc Natl Acad Sci USA2014111(11):4251-4256.
35
Wang S Huo XF Yang YP,et al. Ablation of EWS-FLI1 by USP9X inhibition suppresses cancer cell growth in Ewing sarcoma[J]. Cancer Lett2023552:215984.
36
Liao YN Xia XH Liu NN,et al. Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination[J]. Oncogene201837(14):1896-1910.
37
Chen J Ou YH Yang YY,et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing[J]. Nature2018557(7706):585-589.
38
Deng R Zhang HL Huang JH,et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis[J]. Autophagy202117(10):3011-3029.
39
Zhang Q Tang Z An R,et al. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity[J]. Cell Res202030(10):914-927.
40
Deng M Tam JW Wang LF,et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination[J]. Nat Commun202011(1):2193.
41
Li YJ Liu YH Xu HC,et al. Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II[J]. Nat Commun20189(1):4394.
42
Lu W Liu S Li B,et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer[J]. Oncogene201736(10):1364-1373.
43
Cai Z Moten A Peng DN,et al. The Skp2 pathway:a critical target for cancer therapy[J]. Semin Cancer Biol202067(Pt 2):16-33.
44
Wu H Lu XX Wang JR,et al. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation[J]. Autophagy201915(9):1506-1522.
45
Wang GH Long J Gao Y,et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis[J]. Nat Cell Biol201921(2):214-225.
46
Guo XM Ma PC Li YW,et al. RNF220 mediates K63-linked polyubiquitination of STAT1 and promotes host defense[J]. Cell Death Differ202128(2):640-656.
47
Hou PP Yang KX Jia PH,et al. A novel selective autophagy receptor,CCDC50,delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection[J]. Cell Res202131(1):62-79.

Comments

PDF(941 KB)

Accesses

Citation

Detail

Sections
Recommended

/