Research progress on the mechanisms of mechanical stress affecting cell pyroptosis

Li Xiang, Zheng Leilei

PDF(996 KB)
PDF(996 KB)
Journal of Chongqing Medical University ›› 2024, Vol. 49 ›› Issue (02) : 109-113. DOI: 10.13406/j.cnki.cyxb.003428
Review

Research progress on the mechanisms of mechanical stress affecting cell pyroptosis

Author information +
History +

Abstract

Pyroptosis is a type of cell death that culminates in the loss of membrane integrity as a result of the activation of inflammasome sensors. Pyroptosis plays an important role in the development and progression of inflammation and diseases because of a leakage of the cellular contents into the extracellular space. Cells live in a complex mechanical environment and are subject to various mechanical stimuli originating from the microenvironment and external forces. Appropriate mechanical stress contributes to the normal physiological process of cells,but excessive mechanical stress can activate stress signaling pathways,such as death pathways,resulting in cell tissue damage and inflammation. In this paper,we review the literature on the molecular mechanisms of cell pyroptosis and how mechanical stress affects cell pyroptosis,aiming to provide a basis for future research on pyroptosis-related diseases.

Key words

pyroptosis / mechanical stress / compression / stretch / fluid shear stress

Cite this article

Download Citations
Li Xiang , Zheng Leilei. Research progress on the mechanisms of mechanical stress affecting cell pyroptosis. Journal of Chongqing Medical University. 2024, 49(02): 109-113 https://doi.org/10.13406/j.cnki.cyxb.003428

References

1
Tan YX Chen QZ Li XL,et al. Pyroptosis:a new paradigm of cell death for fighting against cancer[J]. J Exp Clin Cancer Res202140(1):153.
2
Tong XH Tang R Xiao MM,et al. Targeting cell death pathways for cancer therapy:recent developments in necroptosis,pyroptosis,ferroptosis,and cuproptosis research[J]. J Hematol Oncol202215(1):174.
3
Tang DL Kang R Berghe TV,et al. The molecular machinery of regulated cell death[J]. Cell Res201929(5):347-364.
4
Park W Wei SB Kim BS,et al. Diversity and complexity of cell death:a historical review[J]. Exp Mol Med202355(8):1573-1594.
5
Kovacs SB Miao EA. Gasdermins:effectors of pyroptosis[J]. Trends Cell Biol201727(9):673-684.
6
Vande Walle L Lamkanfi M. Pyroptosis[J]. Curr Biol201626(13):R568-R572.
7
Zhao ZX Ming Y Li X,et al. Hyperglycemia aggravates periodontitis via autophagy impairment and ROS-inflammasome-mediated macrophage pyroptosis[J]. Int J Mol Sci202324(7):6309.
8
Wei YN Yang L Pandeya A,et al. Pyroptosis-induced inflammation and tissue damage[J]. J Mol Biol2022434(4):167301.
9
Inman A Smutny M. Feeling the force:Multiscale force sensing and transduction at the cell-cell interface[J]. Semin Cell Dev Biol2021120:53-65.
10
Zhou ZJ Martinac B. Mechanisms of PIEZO channel inactivation[J]. Int J Mol Sci202324(18):14113.
11
Matsumoto H Sugio S Seghers F,et al. Retinal detachment-induced Müller glial cell swelling activates TRPV4 ion channels and triggers photoreceptor death at body temperature[J]. J Neurosci201838(41):8745-8758.
12
Holmgren M Ravicz ME Hancock KE,et al. Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish[J]. Elife202110:e69264.
13
Duszyc K Gomez GA Lagendijk AK,et al. Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion[J]. Curr Biol202131(6):1326-1336.
14
Fink SL Cookson BT. Apoptosis,pyroptosis,and necrosis:mechanistic description of dead and dying eukaryotic cells[J]. Infect Immun200573(4):1907-1916.
15
Liu J Hong MJ Li YJ,et al. Programmed cell death tunes tumor immunity[J]. Front Immunol202213:847345.
16
Carty M Goodbody R Schröder M,et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling[J]. Nat Immunol20067(10):1074-1081.
17
Carty M Kearney J Shanahan KA,et al. Cell survival and cytokine release after inflammasome activation is regulated by the toll-IL-1R protein SARM[J]. Immunity201950(6):1412-1424.
18
Aglietti RA Estevez A Gupta A,et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes[J]. Proc Natl Acad Sci U S A2016113(28):7858-7863.
19
Boucher D Monteleone M Coll RC,et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity[J]. J Exp Med2018215(3):827-840.
20
Ding JJ Wang K Liu W,et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature2016535(7610):111-116.
21
Liu X Zhang ZB Ruan JB,et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature2016535(7610):153-158.
22
Sborgi L Rühl S Mulvihill E,et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J201635(16):1766-1778.
23
Shi JJ Zhao Y Wang YP,et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature2014514(7521):187-192.
24
Bertheloot D Latz E Franklin BS. Necroptosis,pyroptosis and apoptosis:an intricate game of cell death[J]. Cell Mol Immunol202118(5):1106-1121.
25
Santos JC Boucher D Schneider LK,et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria[J]. Nat Commun202011(1):3276.
26
Zasłona Z Flis E Wilk MM,et al. Caspase-11 promotes allergic airway inflammation[J]. Nat Commun202011(1):1055.
27
Li XQ Lu KL Guo SX,et al. TRPV4 blockade alleviates endoplasmic reticulum stress mediated apoptosis in hypoxia-induced cardiomyocyte injury[J]. Cell Signal2023114:110973.
28
Miyata T Nagy LE. Programmed cell death in alcohol-associated liver disease[J]. Clin Mol Hepatol202026(4):618-625.
29
Dondelinger Y Priem D Huyghe J,et al. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis[J]. Cell Death Dis202314(11):755.
30
Ketelut-Carneiro N Fitzgerald KA. Apoptosis,pyroptosis,and necroptosis-oh my!the many ways a cell can die[J]. J Mol Biol2022434(4):167378.
31
Flores-Romero H Ros U Garcia-Saez AJ. Pore formation in regulated cell death[J]. EMBO J202039(23):e105753.
32
Roffay C Chan CJ Guirao B,et al. Inferring cell junction tension and pressure from cell geometry[J]. Development2021148(18):dev192773.
33
Stojanovski K Gheorghe I Lenart P,et al. Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1[J]. Nat Commun202314(1):7564.
34
Pillai EK Franze K. Mechanics in the nervous system:from development to disease[J/OL]. Neuron2023[epub ahead of print]. doi: 10.1016/j.neuron.2023.10.005.
35
Liu HL Hu JL Zheng QC,et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation[J]. Front Immunol202213:816149.
36
Galluzzi L Vitale I Aaronson SA,et al. Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ201825(3):486-541.
37
Galluzzi L Yamazaki T Kroemer G. Linking cellular stress responses to systemic homeostasis[J]. Nat Rev Mol Cell Biol201819(11):731-745.
38
Li Y Zhan Q Bao MY,et al. Biomechanical and biological responses of periodontium in orthodontic tooth movement:up-date in a new decade[J]. Int J Oral Sci202113(1):20.
39
Yao YF Lacroix D Mak AF. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress:confocal-based cell-specific finite element analysis[J]. Biomech Model Mechanobiol201615(6):1495-1508.
40
Wang Y Jin ZZ Jia SS,et al. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model[J]. Biomedecine Pharmacother2023159:114216.
41
Zhu GZ Qian YP Wu WT,et al. Negative effects of high mechanical tensile strain stimulation on chondrocyte injury in vitro [J]. Biochem Biophys Res Commun2019510(1):48-52.
42
Zhang J Liu XQ Wan CY,et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption[J]. J Clin Periodontol202047(4):451-460.
43
Liu W Chen YH Meng J,et al. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo [J]. J Neuroinflammation201815(1):48.
44
Liu SS Pickens S Barta Z,et al. Neuroinflammation drives sex-dependent effects on pain and negative affect in a murine model of repeated mild traumatic brain injury[J/OL]. Pain2023[epub ahead of print]. doi: 10.1097/j.pain.0000000000003084 .
45
Mortezaee K Khanlarkhani N Beyer C,et al. Inflammasome:its role in traumatic brain and spinal cord injury[J]. J Cell Physiol2018233(7):5160-5169.
46
Schoch KM Madathil SK Saatman KE. Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury[J]. Neurotherapeutics20129(2):323-337.
47
Dixon KJ. Pathophysiology of traumatic brain injury[J]. Phys Med Rehabil Clin N Am201728(2):215-225.
48
Soliman E Leonard J Basso EKG,et al. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury[J]. J Neuroinflammation202320(1):256.
49
Almasieh M Wilson AM Morquette B,et al. The molecular basis of retinal ganglion cell death in glaucoma[J]. Prog Retin Eye Res201231(2):152-181.
50
Jayaram H Kolko M Friedman DS,et al. Glaucoma:now and beyond[J]. Lancet2023402(10414):1788-1801.
51
Chen H Deng Y Gan XL,et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener202015(1):26.
52
Ye D Xu Y Shi YX,et al. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model[J]. J Pineal Res202273(4):e12828.
53
Zeng Z You ML Rong R,et al. Translocator protein 18kDa regulates retinal neuron apoptosis and pyroptosis in glaucoma[J]. Redox Biol202363:102713.
54
Lin J Li XK Yin J,et al. Effect of cyclic stretch on neuron reorientation and axon outgrowth[J]. Front Bioeng Biotechnol20208:597867.
55
Colombo A Cahill PA Lally C. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies[J]. Proc Inst Mech Eng H2008222(8):1235-1245.
56
Zhao D Wu YQ Zhuang JB,et al. Activation of NLRP1 and NLRP3 inflammasomes contributed to cyclic stretch-induced pyroptosis and release of IL-1β in human periodontal ligament cells[J]. Oncotarget20167(42):68292-68302.
57
Zhuang JB Wang YY Qu F,et al. Gasdermin-d played a critical role in the cyclic stretch-induced inflammatory reaction in human periodontal ligament cells[J]. Inflammation201942(2):548-558.
58
Sun Y Leng P Song MX,et al. Piezo1 activates the NLRP3 inflammasome in nucleus pulposus cell-mediated by Ca2+/NF-κB pathway[J]. Int Immunopharmacol202085:106681.
59
Claassen JAHR Thijssen DHJ Panerai RB,et al. Regulation of cerebral blood flow in humans:physiology and clinical implications of autoregulation[J]. Physiol Rev2021101(4):1487-1559.
60
Chiu JJ Shu CE. Effects of disturbed flow on vascular endothelium:pathophysiological basis and clinical perspectives[J]. Physiol Rev201191(1):327-387.
61
Xu XS Yang Y Wang GF,et al. Low shear stress regulates vascular endothelial cell pyroptosis through miR-181b-5p/STAT-3 axis[J]. J Cell Physiol2021236(1):318-327.
62
Chen JN Zhang JW Wu JX,et al. Low shear stress induced vascular endothelial cell pyroptosis by TET2/SDHB/ROS pathway[J]. Free Radic Biol Med2021162:582-591.
63
Chen TT Guo YC Shan JJ,et al. Vector analysis of cytoskeletal structural tension and the mechanisms that underpin spectrin-related forces in pyroptosis[J]. Antioxid Redox Signal201930(12):1503-1520.

Comments

PDF(996 KB)

Accesses

Citation

Detail

Sections
Recommended

/