Construction of sulfonated branched polybenzimidazole membranes for application in all-vanadium flow battery

Huiting LI, Xiyang LIU, Jun LONG, Wenheng HUANG, Jinchao LI, Liang CHEN, Qin CHEN, Yaping ZHANG

PDF(4284 KB)
PDF(4284 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 201-211. DOI: 10.11868/j.issn.1001-4381.2025.000095
RESEARCH ARTICLE

Construction of sulfonated branched polybenzimidazole membranes for application in all-vanadium flow battery

Author information +
History +

Abstract

The sulfonated branched polybenzimidazole (sb-PBI) membranes with theoretical sulfonation degrees of 30%,40%,50%,and 60% are prepared by reacting between synthesized branched polybenzimidazole and 1,4-butane sultone for application in all-vanadium flow battery (VFB). Among them,the sb-PBI-50 membrane shows excellent vanadium ion resistance (9.34×10-9 cm2/min),proton conductivity (2.05×10-2 S/cm),and selectivity (2.20×106 S·min/cm3). The coulomb efficiencies (96.26%-98.35%),voltage efficiencies (73.50%-90.19%),and energy efficiencies (71.72%-86.82%) of VFB with sb-PBI-50 membrane are higher than those of commercial Nafion 212 membrane under the current density of 80-280 mA/cm2. In addition,the VFB assembled with sb-PBI-50 membrane can stably carry out 1170 charge-discharge cycles at 140 mA/cm2. The chemical structure and micro-morphologies can remain stable after long-term cycles,indicating that the sb-PBI-50 membrane has good application potential in VFB.

Key words

membrane / sulfonated branched polybenzimidazole / proton conductivity and selectivity / all-vanadium flow battery

Cite this article

Download Citations
Huiting LI , Xiyang LIU , Jun LONG , et al . Construction of sulfonated branched polybenzimidazole membranes for application in all-vanadium flow battery. Journal of Materials Engineering. 2025, 53(7): 201-211 https://doi.org/10.11868/j.issn.1001-4381.2025.000095

References

[1]
陈妍. 以新型能源体系建设推动经济社会全面绿色转型的路径[J]. 全球化20246:73-80.
CHEN Y. The key path to promote the green transformation of the economy and society through the construction of a new energy system[J]. Globalization20246: 73-80.
[2]
LV Y F GENG X W LUO W M, et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety[J]. Journal of Energy Storage202372: 108389.
[3]
魏甲明,陈宋璇,付云枫,等. 全产业链贯通布局下钒液流电池长时储能发展思考[J]. 中国有色冶金202453(3):7-18.
WEI J M CHEN S X FU Y F, et al. Strategic considerations for the development of vanadium redox flow batteries for long-duration energy storage within a fully integrated industry chain[J]. China Nonferrous Metallurgy202453(3): 7-18.
[4]
ZHAO N N PLATT A RILEY H, et al. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries[J]. Journal of Energy Storage202372, 108321.
[5]
MYURES X M SURESH S ARTHANAREESWARAN G. Construction of thermal, chemical and mechanically stable ion exchange membranes with improved ion selectivity for vanadium redox flow batteries applications[J]. Journal of Power Sources2024591: 233818.
[6]
IKHSAN M M ABBAS S DO X H, et al. Polybenzimidazole membranes for vanadium redox flow batteries: effect of sulfuric acid doping conditions[J]. Chemical Engineering Journal2022435: 134902.
[7]
GENG K LI Y XING Y, et al. A novel polybenzimidazole membrane containing bulky naphthalene group for vanadium flow battery[J]. Journal of Membrane Science2019586: 231-239.
[8]
MAURYA S ABAD S D PARK E J, et al. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries[J]. Journal of Membrane Science2023668: 121233.
[9]
SU Y K LIU S Q SHAO B, et al. Building water molecule chains in polybenzimidazole membrane toward superior vanadium redox flow battery[J]. Chemical Engineering Journal2024485: 149838.
[10]
CUI Y H WANG S WANG D, et al. HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid[J]. Journal of Membrane Science2021637: 119610.
[11]
MATSUMOTO K HIGASHIHARA T UEDA M. Star-shaped sulfonated block copoly(ether ketone)s as proton exchange membranes[J]. Macromolecules200841: 7560-7565.
[12]
MOU Z H YAN R X PENG J, et al. Synthesis of polyzwitterionic carbon dots with superior friction and fatigue control behaviors under water lubrication[J]. Chemical Engineering Journal2023465: 142986.
[13]
LI S ZHU X L LIU D Z, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. Journal of Membrane Science2018546: 15-21.
[14]
XU J F ZHAO H LI W H, et al. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries[J]. Chemical Engineering Journal2022433: 133197.
[15]
KICINSKI W DZIURA A. Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: sulfur-doped carbon xerogels[J]. Carbon201475: 56-67.
[16]
CHEN D Y HICKNER M A. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries[J]. Physical Chemistry Chemical Physics201315: 11299-11305.
[17]
WANG L YU L H MU D, et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries[J]. Journal of Membrane Science2018552: 167-176.
[18]
XI J Y LI Z H YU L H, et al. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery[J]. Journal of Power Sources2015285: 195-204.
[19]
LIANG D WANG S MA W J, et al. A low vanadium permeability sulfonated polybenzimidazole membrane with a metal-organic framework for vanadium redox flow batteries[J]. Electrochimica Acta2022405: 139795.
[20]
SHI B B PANG X LI S N, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity[J]. Nature Communications202213: 6666.
[21]
PANG B WU X M GUO Y S, et al. Anionic conductive group tunable amphoteric polybenzimidazole ion conductive membrane for vanadium redox flow battery[J]. Journal of Membrane Science2023670: 121351.
[22]
DING L M SONG X P WANG L H, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science2019578: 126-135.
[23]
REN X R ZHAO L N CHE X F, et al. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications[J]. Journal of Power Sources2020457: 228037.
[24]
WAN Y H SUN J JIANG H R, et al. A highly-efficient composite polybenzimidazole membrane for vanadium redox flow battery[J]. Journal of Power Sources2021489: 229502.
[25]
DING L M WANG L H. Preparation of novel structure polybenzimidazole with thiophene ring for high performance proton conducting membrane in vanadium flow battery[J]. Journal of Power Sources2023564: 232858.
[26]
CHE X F ZHAO H REN X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science2020611: 118359.
[27]
PANG B ZHANG Q YAN X M, et al. Superior acidic sulfate ester group based high conductive membrane for vanadium redox flow battery[J]. Journal of Power Sources2021506: 230203.
[28]
XIA Z J YING L B FANG J H, et al. Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications[J]. Journal of Membrane Science2017525: 229-239.
[29]
ZHAO Y Y LI M R YUAN Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials201626: 210-218.

Comments

PDF(4284 KB)

Accesses

Citation

Detail

Sections
Recommended

/