Effect of Hf content on phase composition and high-temperature oxidation of NiCoCrAlY alloy

Rui XUE, Jing ZHANG, Wenbin XIN, Xiwen SONG, Zhendong CHANG, Rende MU, Yan CAI

PDF(11610 KB)
PDF(11610 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (6) : 24-34. DOI: 10.11868/j.issn.1001-4381.2025.000040
REPAIR TECHNOLOGY OF AERO-ENGINE AND GAS TURBINE BLADES COLUMN

Effect of Hf content on phase composition and high-temperature oxidation of NiCoCrAlY alloy

Author information +
History +

Abstract

The phase composition and structure play an important role in the high-temperature oxidation resistance of the bonding layer alloy. Furthermore, the high-temperature oxidation resistance of the alloy strongly affects the working life of the thermal barrier coating prepared. In this paper, the effects of different Hf contents on the phase composition, structure, and isothermal oxidation process at 1150 ℃ are investigated by Thermo-Calc, X ray diffraction, and field emission scanning electron microscopy. The results of theoretical calculations and microstructure observations indicate that the phase composition of NiCoCrAlY alloy containing 0.5% (mass fraction, the same below) and 1%Hf are mainly composed of the γ'-Ni3Al phase and the β-NiAl phase. As the Hf content increases from 0.5% to 1%, the liquidus temperature of the alloys decreases from 1422 ℃ to 1418 ℃, the solidus temperature decreases from 1297 ℃ to 1287 ℃, and the solidification temperature range increases. Furthermore, the precipitation temperature of the α-Cr phase increases from 860 ℃ to 880 ℃ with increasing Hf content. The β-NiAl phase content of the bonding alloy with 0.5%Hf in the temperature range of 1000-1250 ℃ is higher than that of the alloy with 1.0%Hf. The isothermal oxidation analysis for 200 h shows that the mass gain versus oxidation time curves follow the typical parabolic oxidation kinetics. As the Hf content increases from 0.5% to 1.0% in alloys, the average oxidation rate increases from (0.15±0.008) g·m-2·h-1 to (0.32±0.006) g·m-2·h-1, and the parabolic oxidation rate constant k p increases from 4.163 g2∙m-4∙h-1 to 9.337 g2∙m-4∙h-1. According to the phase analysis and morphology observation of the oxide layer, it is found that the oxide layer is mainly a dense Al2O3 layer; the white contrast HfO2 phase is also distributed in the oxide film. With the increase of Hf content, the distribution of the HfO2 phase in the oxide layer changes from discontinuity to continuousness, and the number and area of HfO2 particles increase. Meanwhile, the internal oxidation degree is aggravated and the thickness of the lean Al layer is improved.

Key words

bond coat / high temperature oxidation / Hf modification / phase composition / NiCoCrAlY alloy

Cite this article

Download Citations
Rui XUE , Jing ZHANG , Wenbin XIN , et al . Effect of Hf content on phase composition and high-temperature oxidation of NiCoCrAlY alloy. Journal of Materials Engineering. 2025, 53(6): 24-34 https://doi.org/10.11868/j.issn.1001-4381.2025.000040

References

[1]
张晗,刘轩溱,黄爱辉,等. 热障涂层金属黏结层制备与研究进展[J]. 中国腐蚀与防护学报202545(1): 20-32.
ZHANG H LIU X Z HUANG A H, et al. Manufacturing and research progress in metallic bond coats for thermal barrier coatings[J]. Journal of Chinese Society for Corrosion and Protection202545(1):20-32.
[2]
NAUMENKO D SHEMET V SINGHEISER L, et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide[J]. Journal of Materials Science200944(7): 1687-1703.
[3]
李文权,周红霞,苏浩然,等. 热障涂层的抗CMAS腐蚀研究进展[J]. 材料导报202337(): 147-154.
摘要
增刊2
LI W Q ZHOU H X SU H R, et al. Progress of research on CMAS corrosion resistance of thermal barrier coatings[J]. Materials Reports202337():147-154.
Suppl 2
[4]
钱余海,李美栓,张亚明. 氧化膜开裂和剥落行为[J]. 腐蚀科学与防护技术200315(2): 90-93.
QIAN Y H LI M S ZHANG Y M. Cracking and spalling behavior of thin oxide scale[J]. Corrosion Science and Protection Technology200315(2):90-93.
[5]
曹家旭. MCrAlY涂层与单晶高温合金互扩散行为研究[D]. 广州:广东工业大学, 2020.
CAO J X. Interdiffusion behavior of MCrAlY coating and single crystal superalloy[D]. Guangzhou: Guangdong University of Technology, 2020.
[6]
门引妮,李进,卢金文,等. MCrAlY涂层的研究进展[J]. 表面技术202453(7): 31-39.
MEN Y N LI J LU J W, et al. Research progress of MCrAlY coatings[J]. Surface Technology202453(7): 31-39.
[7]
任先京,张淑婷,杜开平,等. Si对MCrAlY涂层高温性能的影响[J]. 热喷涂技术20168(1): 11-16.
REN X J ZHANG S T DU K P, et al. Effect of Si on high temperature performance of MCrAlY coatings[J]. Thermal Spray Technology20168(1):11-16.
[8]
苗小锋,云海涛,郑兆然. Ta含量对MCrAlY抗氧化性的影响[J]. 热喷涂技术202012(2): 47-51.
MIAO X F YUN H T ZHENG Z R. Effect of Ta content on oxidation resistant of MCrAlY coatings[J]. Thermal Spray Technology202012(2):47-51.
[9]
刘子杰. 定向凝固DZ411镍基高温合金微观结构演化及性能研究[D]. 兰州:兰州大学, 2023.
LIU Z J. Study on microstructure evolution and properties of directionally solidified DZ411 nickel based high temperature alloy[D]. Lanzhou: Lanzhou University,2023.
[10]
彭新. Re、ReCr和PtCrRe改性NiAl涂层的制备和高温腐蚀性能研究[D]. 合肥:中国科学技术大学, 2024.
PENG X. Preparation and high temperature corrosion properties of NiAl coatings modified with Re, ReCr, and PtCrRe[D]. Hefei: University of Science and Technology of China,2024.
[11]
LIANG J J WEI H ZHU Y L, et al. Influence of Re on the properties of a NiCoCrAlY coating alloy[J]. Journal of Materials Science & Technology201127(5): 408-414.
[12]
LIANG J J WEI H ZHU Y L, et al. Phase constituents and thermal expansion behavior of a NiCrAlYRe coating alloy[J]. Journal of Materials Science201146(2): 500-508.
[13]
王晓明,韩国峰,尹轶川,等. 基于相平衡计算的Hf掺杂NiCoCrAlY高温涂层设计及强化机理[J]. 中国表面工程202235(3): 132-145.
WANG X M HAN G F YIN Y C, et al. Design and strengthening mechanism of the Hf-doped NiCoCrAlY coatings based on phase equilibrium calculation[J]. China Surface Engineering202235(3):132-145.
[14]
赵春山. 活性元素掺杂NiAl黏结层制备及抗氧化性能研究[D]. 上海:上海交通大学, 2019.
ZHAO C S. Preparation and antioxidant properties of NiAl bonding layer doped with active elements[D]. Shanghai: Shanghai Jiao Tong University,2019.
[15]
王艳丽,赵希宏,范映伟,等. Hf对IC10高温合金凝固特性的影响[J]. 航空材料学报201232(6): 50-55.
WANG Y L ZHAO H X FAN Y W, et al. The effect of Hf on the solidification characteristics of IC10 high temperature alloy[J]. Journal of Aeronautical Materials201232(6):50-55.
[16]
陈晓燕,周亦胄,张朝威,等. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响[J]. 金属学报201450(8): 1019-1024.
CHEN X Y ZHOU Y Z ZHANG C W, et al. Effect of Hf on the interfacial reaction between a nickel base superalloy and a ceramic material[J]. Acta Metallurgica Sinica201450(8):1019-1024.
[17]
CHEN X. Progressive damage and failure of thermal barrier coatings[D]. Michigan: Wayne State University, 2001.
[18]
POMEROY M J. Coatings for gas turbine materials and long term stability issues[J]. Materials & Design200526(3): 223-231.
[19]
许振华,牟仁德,曹学强,等. NiCrAlYSi涂层与镍基高温合金基体互扩散行为研究[J]. 材料工程2009(2): 67-73.
XU Z H MU R D CAO X Q, et al. Study of the interdiffusion behavior between NiCrAlYHf coating and Ni-based superalloy substrate[J]. Journal of Materials Engineering2009(2):67-73.
[20]
钟锦岩,牟仁德,何英,等. NiCoCrAlYHf涂层与一种Ni基单晶高温合金循环氧化行为研究[J]. 材料工程2013(8): 28-35.
ZHONG J Y MU R D HE Y, et al. Thermal cyclic oxidation behavior between NiCoCrAlYHf bond coat and a kind of Ni-based single crystal superalloy[J]. Journal of Materials Engineering2013(8):28-35.
[21]
陆杰. 高性能MCrAlYHf(M=Ni, Co, Fe)热障涂层黏结层材料的设计及其氧化机制研究[D]. 上海:上海交通大学, 2020.
LU J. Design and oxidation mechanism of high performance MCrAlYHf(M=Ni, Co, Fe) bond coat material for thermal barrier coating[D]. Shanghai:Shanghai Jiao Tong University,2020.
[22]
EBACH S A SCHULZ U SWADZBA R, et al. Lifetime improvement of EB-PVD 7YSZ TBCs by doping of Hf or Zr in NiCoCrAlY bond coats[J].Corrosion Science2021181: 109205.
[23]
史天杰,张鑫,彭浩然,等. 热障涂层材料体系研究现状及展望[J]. 热喷涂技术202315(2): 1-12.
SHI T J ZHANG X PENG H R, et al. Research status and prospect of thermal barrier coating materials system[J]. Thermal Spray Technology202315(2):1-12.
[24]
蔡妍,李建平,何利民,等. NiCoCrAlYHf涂层材料的1200 ℃高温氧化行为[J]. 真空201754(6): 12-16.
CAI Y LI J P HE L M, et al. 1200 ℃ oxidation behavior study of NiCoCrAlYHf coating[J]. Vacuum201754(6):12-16.

Comments

PDF(11610 KB)

Accesses

Citation

Detail

Sections
Recommended

/