Effect of water entry temperature and aging parameters on precipitation and mechanical properties of 7075 aluminum alloy

Changhai NIU, Qian SUN, Jia ZHENG, Qiu PANG

PDF(1810 KB)
PDF(1810 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (4) : 35-42. DOI: 10.11868/j.issn.1001-4381.2024.000716
HIGH-PERFORMANCE FORMING MANUFACTURING TECHNOLOGY FOR TRANSPORTATION EQUIPMENT ALUMN

Effect of water entry temperature and aging parameters on precipitation and mechanical properties of 7075 aluminum alloy

Author information +
History +

Abstract

This paper proposes a non-isothermal solid solution-forging integrated hot forming process for 7075 aluminum alloy. After solid solution treatment, the aluminum alloy is directly placed into the mold for forging, then quenched and subjected to artificial aging treatment. The influence of water entry temperature and aging parameters on the microstructure and properties of 7075 aluminum alloy is studied under this process, through the construction of a temperature-time-property(TTP) curve. Additionally, machine learning techniques are integrated to optimize and match the key process parameters. The results reveal that the nose temperature of the TTP curve is 315 ℃, and the mechanical properties of the alloy increase with the increase of water temperature after aging, a double-peak phenomenon after non-isothermal forging and aging is observed. When the inlet temperature is 380 ℃, the optimal aging parameters are 115 ℃-26 h and the peak hardness is 182HV. After training, the prediction accuracy of the BP neural network model is 94.9977%. Experimental verification of the optimal process parameters predicted by the model shows that its prediction similarity is 96.9%. Compared with traditional forging processes, this process can achieve high mechanical properties than traditional forged T6-state 7075 aluminum alloy while reducing procedural steps and energy consumption.

Key words

7075 aluminum alloy / TTP / water entry temperature / non-isothermal forging / machine learning

Cite this article

Download Citations
Changhai NIU , Qian SUN , Jia ZHENG , et al. Effect of water entry temperature and aging parameters on precipitation and mechanical properties of 7075 aluminum alloy. Journal of Materials Engineering. 2025, 53(4): 35-42 https://doi.org/10.11868/j.issn.1001-4381.2024.000716

References

[1]
LIN J DEAN T A GARRETT R P. A process in forming high strength and complex-shaped Al-alloy sheet components:UK WO2008059242[P]. 2008-05-22.
[2]
ZHAO N MA H SUN Q, et al. Microstructural evolutions and mechanical properties of 6082 aluminum alloy part produced by a solution-forging integrated process[J]. Journal of Materials Processing Technology2022308: 117715.
[3]
ZHAO N SUN Q PANG Q, et al. Comprehensive study of hot compression behaviors and microstructure evolution of solutionized 6082 aluminum alloy extruded bar[J]. Journal of Alloys and Compounds2023931: 167541.
[4]
HUA L YUAN P G ZHAO N, et al. Microstructure and mechanical properties of 6082 aluminum alloy processed by preaging and hot forging[J]. Transactions of Nonferrous Metals Society of China202232(3): 790-800.
[5]
ZHANG J YI Y HUANG S, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Materials Science and Engineering: A2021804: 140650.
[6]
LIN Y C LIANG Y J CHEN M S, et al. A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al-Zn-Mg-Cu alloy[J]. Applied Physics A2017123(1): 68.
[7]
SUN Z C ZHENG L S YANG H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation[J]. Materials Characterization201490: 71-80.
[8]
DALAI B MORETTI M A ÅKERSTRÖM P, et al. Mechanical behavior and microstructure evolution during deformation of AA7075-T651[J]. Materials Science and Engineering: A2021822: 141615.
[9]
LIU M. Hot tensile deformation behavior and microstructure evolution of 7075 aluminum alloy sheet[J]. Journal of Materials Research and Technology202324: 724-736.
[10]
辛志文. 7075铝合金厚板淬火残余应力及其敏感性分析[D]. 南昌:南昌航空大学, 2018.
XIN Z W. Residual stress and sensitivity analysis of 7075 aluminum alloy plate quenching[D]. Nanchang:Nanchang Hangkong University, 2018.
[11]
LIU S ZHONG Q ZHANG Y, et al. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams[J]. Materials & Design201031(6): 3116-3120.
[12]
DAI X Y XIONG C Y LI N, et al. TTT and TTP diagrams of quenching sensitivity of Al-9.0Zn-2.5Mg-1.5Cu-0.15Zr-0.2Sc alloy[J]. Rare Metal Materials and Engineering201948(3): 721-727.
[13]
ZHENG K DONG Y ZHENG J H, et al. The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys[J]. Materials Science and Engineering: A2019761: 138017.
[14]
王刚. 汽车用冷轧态高强铝合金HFQ®技术研究及工程验证[D]. 长春:吉林大学, 2023.
WANG G. Research on HFQ® technology of automotive cold-rolled high-strength Al alloy and its verification in engineering[D]. Changchun:Jilin University, 2023.
[15]
韩宝帅, 魏立军, 徐严谨, 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报202056(7):1007-1014.
HAN B S WEI L J XU Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment[J]. Acta Metallurgica Sinica202056(7): 1007-1014.
[16]
袁丁玲. 热处理和预变形对Al-Zn-Mg-xCu超强铝合金组织与性能的影响[D].长沙:中南大学, 2022.
YUAN D L. Effects of heat treatment and pre-deformation on microstructure and properties of super-strength Al-Zn-Mg-xCu aluminum alloys[D]. Changsha:Central South University, 2022.
[17]
SUN Q YU S WANG H, et al. Experimental and simulation study for the influence of thermal pre-deformation on subsequent aging precipitation kinetics of Al-Zn-Mg-Cu alloy[J]. Materials202215(13): 4634.
[18]
邢清源, 臧金鑫, 陈军洲, 等. 超高强铝合金研究进展与发展趋势[J]. 航空材料学报202444(2): 60-71.
XING Q Y ZANG J X CHEN J Z, et al. Research progress and development tendency of ultra-high strength aluminum alloys[J]. Journal of Aeronautical Materials202444(2): 60-71.
[19]
LI J ZHANG Y CAO X,et al. Accelerated discovery of high-strength aluminum alloys by machine learning[J]. Communications Materials20201: 73.
[20]
JUAN Y NIU G YANG Y,et al. Knowledge-aware design of high-strength aviation aluminum alloys via machine learning[J]. Journal of Materials Research and Technology202324: 346-361.
[21]
PARK S KAYANI S H, EUH K, et al. High strength aluminum alloys design via explainable artificial intelligence[J]. Journal of Alloys and Compounds2022903: 163828.
[22]
LIAN Z LI M LU W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning[J]. International Journal of Fatigue2022157: 106716.
[23]
YE J PAN Q LIU B, et al. Study on quenching sensitivity of an Al-Zn-Mg-Cu alloy containing trace amounts of Sc and Zr[J]. Journal of Materials Science202257(15): 7747-7762.
[24]
GODARD D ARCHAMBAULT P AEBY-GAUTIER E, et al. Precipitation sequences during quenching of the AA 7010 alloy[J]. Acta Materialia200250: 2319-2329.
[25]
刘兆翔. 7075铝合金先进预冷热冲压成形技术研究[D]. 长春:吉林大学, 2020.
LIU Z X. Study on an advanced pre-cooling hot stamping forming technology of 7075 aluminium alloy[D]. Changchun:Jilin University, 2020.
[26]
ZHANG X DENG X ZHOU H, et al. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging[J]. Journal of Materials Science & Technology2022108: 281-292.
[27]
姚洪瀚. 7050铝合金一种新型形变热处理工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
YAO H H. A new thermo-mechanical treatment of 7050 aluminium alloy[D]. Harbin: Harbin Institute of Technology, 2013.
[28]
LI J F PENG Z W LI C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments[J]. Transactions of Nonferrous Metals Society of China200818(4): 755-762.
[29]
QI X CHEN X M SONG R G. Study on double peaks aging strengthening and stress corrosion cracking behaviour of 7075 aluminium alloy[J]. Corrosion Engineering, Science and Technology, 202156(7): 668-677.
[30]
CAI S W HE Y SONG R G. Study on the strengthening mechanism of two-stage double-peaks aging in 7075 aluminum alloy[J]. Transactions of the Indian Institute of Metals202073(1): 109-117.

Comments

PDF(1810 KB)

Accesses

Citation

Detail

Sections
Recommended

/