
Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades
Mengyuan ZHAI, Yikai SHAO, Huiming WANG, Weiwei ZHENG
Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades
By dissecting DZ125 turbine blades that have been in actual service for 499 h and integrating an artificial neural network model to assess the service temperature and stress in various blade components, the normal and overtemperature service tissues of the turbine blades have been identified. Focusing on DZ125 alloy for turbine blades, simulations of normal and overtemperature service conditions are conducted through variable cross-section experiments at 925 ℃/32-200 MPa/500 h and 1075 ℃/10-60 MPa/100 h, respectively. Both service structures undergo sub-solvus recovery heat treatment at a solid solution temperature of 1200 ℃, and the impacts of this treatment on both service structures are observed. The results reveal that the most severely damaged part of the DZ125 turbine blade is the leading edge in the middle of the blade, with a maximum service temperature of 1075 ℃. The microstructure degradation of DZ125 alloy is more pronounced at 1075 ℃ compared to 925 ℃. Following sub-solvus recovery heat treatment, the normal service structure simulated at 925 ℃ with variable cross sections exhibits degradation, whereas the overtemperature service structure simulated at 1075 ℃ with variable cross sections shows precipitation of cubic secondary γ′ phase. Notably, after sub-solvus recovery heat treatment, the creep life of DZ125 alloy in a specific overtemperature service damage state increases from 16 h to 25 h under conditions of 980 ℃/220 MPa. The sub-solvus recovery heat treatment proves detrimental to the normal temperature service microstructure but has a beneficial recovery effect on the overtemperature service microstructure.
DZ125 turbine blade / overtemperature service microstructure / variable section test / sub-solvus recovery heat treatment
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
孙淑珍, 李淑媛, 郑运荣. WJ5A发动机涡轮叶片折断及裂纹分析[J]. 材料工程, 1990(3): 45-48.
|
[7] |
赵文侠, 李莹, 范映伟,等. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012(8): 39-44.
|
[8] |
|
[9] |
蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1986.
|
[10] |
|
[11] |
|
[12] |
陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究[J]. 金属学报, 2016, 52(12): 1545-1556.
|
[13] |
|
[14] |
郭建亭. 高温合金材料学(Ⅱ) [M]. 北京: 科学出版社, 2008.
|
[15] |
|
[16] |
|
[17] |
张京, 郑运荣, 冯强. 基于蠕变损伤的定向凝固DZ125 合金恢复热处理研究[J]. 金属学报, 2016, 52(6): 717-726.
|
[18] |
李秋良, 周鑫, 王学德, 等. DZ125高温合金涡轮叶片的性能恢复热处理[J]. 金属热处理, 2019, 44(5): 72-76.
|
[19] |
王天佑, 王小蒙, 赵子华, 等. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
|
[20] |
付超. 基于微观组织演变的 DZ125 定向凝固涡轮叶片高温蠕变寿命评估[D]. 北京: 北京科技大学, 2019.
|
[21] |
陈亚东. 定向凝固DZ125合金高压涡轮叶片正常服役损伤及其评价研究[D]. 北京: 北京科技大学, 2016.
|
[22] |
《中国航空材料手册》编辑委员会. 中国航空材料手册·第2卷·变形高温合金·铸造高温合金[M]. 2版.北京: 中国标准出版社, 2001.
Editorial Committee of the "China Aeronautical Materials Handbook". China aeronautical materials handbook, volume 2: wrought superalloys & cast superalloys[M]. 2nd ed. Beijing: Standards Press of China, 2001.
|
[23] |
|
[24] |
|
[25] |
徐可君, 王永旗, 夏毅锐,等. 某型发动机150 h持久试车涡轮部件寿命消耗研究[J]. 航空发动机, 2015, 41(2): 60-65.
|
[26] |
冯强, 童锦艳, 郑运荣. 燃气涡轮叶片的服役损伤与修复[J]. 中国材料进展, 2012, 31(12): 21-34.
|
[27] |
|
/
〈 |
|
〉 |