Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades

Mengyuan ZHAI, Yikai SHAO, Huiming WANG, Weiwei ZHENG

PDF(6101 KB)
PDF(6101 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (6) : 1-11. DOI: 10.11868/j.issn.1001-4381.2024.000674
REPAIR TECHNOLOGY OF AERO-ENGINE AND GAS TURBINE BLADES COLUMN

Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades

Author information +
History +

Abstract

By dissecting DZ125 turbine blades that have been in actual service for 499 h and integrating an artificial neural network model to assess the service temperature and stress in various blade components, the normal and overtemperature service tissues of the turbine blades have been identified. Focusing on DZ125 alloy for turbine blades, simulations of normal and overtemperature service conditions are conducted through variable cross-section experiments at 925 ℃/32-200 MPa/500 h and 1075 ℃/10-60 MPa/100 h, respectively. Both service structures undergo sub-solvus recovery heat treatment at a solid solution temperature of 1200 ℃, and the impacts of this treatment on both service structures are observed. The results reveal that the most severely damaged part of the DZ125 turbine blade is the leading edge in the middle of the blade, with a maximum service temperature of 1075 ℃. The microstructure degradation of DZ125 alloy is more pronounced at 1075 ℃ compared to 925 ℃. Following sub-solvus recovery heat treatment, the normal service structure simulated at 925 ℃ with variable cross sections exhibits degradation, whereas the overtemperature service structure simulated at 1075 ℃ with variable cross sections shows precipitation of cubic secondary γ′ phase. Notably, after sub-solvus recovery heat treatment, the creep life of DZ125 alloy in a specific overtemperature service damage state increases from 16 h to 25 h under conditions of 980 ℃/220 MPa. The sub-solvus recovery heat treatment proves detrimental to the normal temperature service microstructure but has a beneficial recovery effect on the overtemperature service microstructure.

Key words

DZ125 turbine blade / overtemperature service microstructure / variable section test / sub-solvus recovery heat treatment

Cite this article

Download Citations
Mengyuan ZHAI , Yikai SHAO , Huiming WANG , et al. Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades. Journal of Materials Engineering. 2025, 53(6): 1-11 https://doi.org/10.11868/j.issn.1001-4381.2024.000674

References

[1]
MARAHLEH G KHEDER A R I HAMAD H F. Creep life prediction of service-exposed turbine blades[J]. Materials Science and Engineering: A2006433(1): 305-309.
[2]
MACCAGNO T M KOUL A K IMMARIGEON J P, et al. Microstructure, creep properties, and rejuvenation of service-exposed alloy 713C turbine blades[J]. Metallurgical Transactions A199021(12): 3115-3125.
[3]
CHEN Y D ZHENG Y R XIAO C B, et al. Evaluation of temperature and stress in first stage high pressure turbine blades of a directionally‐solidified superalloy DZ125 after service in aeroengines[M]. Pennsylvania:Wiley, 2016: 701-710.
[4]
SUJATA M MADAN M RAGHAVENDRA K, et al. Identification of failure mechanisms in nickel base superalloy turbine blades through microstructural study[J]. Engineering Failure Analysis201017(6): 1436-1446.
[5]
RANI S AGRAWAL A K RASTOGI V. Failure investigations of a first stage Ni based superalloy gas turbine blade[J]. Materials Today: Proceedings20185(1): 477-486.
[6]
孙淑珍, 李淑媛, 郑运荣. WJ5A发动机涡轮叶片折断及裂纹分析[J]. 材料工程1990(3): 45-48.
SUN S Z LI S Y ZHENG Y R. Fracture and crack analysis of turbine blades of WJ5A jet engine[J]. Journal of Materials Engineering1990(3): 45-48.
[7]
赵文侠, 李莹, 范映伟,等. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程2012(8): 39-44.
ZHAO W X LI Y FAN Y W, et al. Fracture analysis for second stage rotor turbine blade in aero-engine[J]. Journal of Materials Engineering2012(8): 39-44.
[8]
KOLAGAR A M TABRIZI N CHERAGHZADEH M, et al. Failure analysis of gas turbine first stage blade made of nickel-based superalloy[J]. Case Studies in Engineering Failure Analysis20178: 61-68.
[9]
蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1986.
CAI Y L ZHENG Y R. Metallographic study of superalloys[M]. Beijing: National Defense Industry Press, 1986.
[10]
MIURA N NAKATA K MIYAZAKI M, et al. Morphology of γ' precipitates in second stage high pressure turbine blade of single crystal nickel-based superalloy after serviced[J]. Materials Science Forum2010638/642: 2291-2296.
[11]
KOUL A K WALLACE W. Microstructural changes during long time service exposure of Udimet 500 and Nimonic 115[J]. Metallurgical Transactions A1983(14): 183-189.
[12]
陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究[J]. 金属学报201652(12): 1545-1556.
CHEN Y D ZHENG Y R FENG Q. Evaluating service temperature field of high pressure turbine blades made of directionally solidified DZ125 superalloy based on micro-structural evolution[J]. Acta Metallurgica Sinica201652(12): 1545-1556.
[13]
FU C CHEN Y D LI L, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks[J]. Materials Today Communications202022: 100838.
[14]
郭建亭. 高温合金材料学(Ⅱ) [M]. 北京: 科学出版社, 2008.
GUO J T. Materials science and engineering for superalloys(Ⅱ)[M]. Beijing: Science Press, 2008.
[15]
BELL S R. Repair and rejuvenation procedures for aero gas-turbine hot-section components[J]. Materials Science and Technology19851(8): 629-634.
[16]
YOSHIOKA Y SAITO D TAKAKU R, et al. Development, reliability evaluation and service experiences of gas turbine blade life regeneration technology[J]. Transactions of the Indian Institute of Metals201063(2/3): 289-295.
[17]
张京, 郑运荣, 冯强. 基于蠕变损伤的定向凝固DZ125 合金恢复热处理研究[J]. 金属学报201652(6): 717-726.
ZHANG J ZHENG Y R FENG Q. Study on rejuvenation heat treatment of a directionally-solidified superalloy DZ125 damaged by creep[J]. Acta Metallurgica Sinica201652(6): 717-726.
[18]
李秋良, 周鑫, 王学德, 等. DZ125高温合金涡轮叶片的性能恢复热处理[J]. 金属热处理201944(5): 72-76.
LI Q L ZHOU X WANG X D, et al. Performance recovery heat treatment of DZ125 superalloy turbine blade[J]. Heat Treatment of Metals201944(5): 72-76.
[19]
王天佑, 王小蒙, 赵子华, 等. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程201745(2): 88-95.
WANG T Y WANG X M ZHAO Z H, et al. Effect of HIP combined with RHT process on creep damage of DZ125 superalloy[J]. Journal of Materials Engineering201745(2): 88-95.
[20]
付超. 基于微观组织演变的 DZ125 定向凝固涡轮叶片高温蠕变寿命评估[D]. 北京: 北京科技大学, 2019.
FU C. Creep life assessment of a directional solidified DZ125 superalloy turbine blade based on microstructural evolution[D]. Beijing: University of Science and Technology Beijing, 2019.
[21]
陈亚东. 定向凝固DZ125合金高压涡轮叶片正常服役损伤及其评价研究[D]. 北京: 北京科技大学, 2016.
CHEN Y D. The assessment of normal service induced damage in high pressure turbine blades made of directionally-solidified superalloy DZ125[D]. Beijing: University of Science and Technology Beijing, 2016.
[22]
《中国航空材料手册》编辑委员会. 中国航空材料手册·第2卷·变形高温合金·铸造高温合金[M]. 2版.北京: 中国标准出版社, 2001.
Editorial Committee of the "China Aeronautical Materials Handbook". China aeronautical materials handbook, volume 2: wrought superalloys & cast superalloys[M]. 2nd ed. Beijing: Standards Press of China, 2001.
[23]
ZHAO P F HOU K L WANG M, et al. Effects of sub-solvus ageing on the tensile and creep properties of a new cast nickel-based superalloy[J]. Journal of Materials Science & Technology2025212: 289-302.
[24]
XIA W ZHAO X WANG J, et al. New strategy to improve the overall performance of single-crystal superalloys by designing a bimodal γ′ precipitation microstructure[J]. Acta Materialia2023257: 119200.
[25]
徐可君, 王永旗, 夏毅锐,等. 某型发动机150 h持久试车涡轮部件寿命消耗研究[J]. 航空发动机201541(2): 60-65.
XU K J WANG Y Q XIA Y R, et al. Research on life consumption of turbine components for an aeroengine in 150 hours endurance test [J]. Aeroengine201541(2): 60-65.
[26]
冯强, 童锦艳, 郑运荣. 燃气涡轮叶片的服役损伤与修复[J]. 中国材料进展201231(12): 21-34.
FENG Q TONG J Y ZHENG Y R. Service induced degradation and rejuvenation of gas turbine blades[J]. Materials China201231(12): 21-34.
[27]
MASOUMI F JAHAZI M SHAHRIARI D, et al. Coarsening and dissolution of γ′ precipitates during solution treatment of AD730TM Ni-based superalloy: mechanisms and kinetics models[J]. Journal of Alloys and Compounds2016658: 981-995.

Comments

PDF(6101 KB)

Accesses

Citation

Detail

Sections
Recommended

/