Evaluation and mechanism investigations of titanium-fire inclusiveness in aeroengine compressor

Guangbao MI, Ruochen SUN, Yuehai QIU, Fuli DONG

PDF(8816 KB)
PDF(8816 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (1) : 143-153. DOI: 10.11868/j.issn.1001-4381.2024.000595
RESEARCH ARTICLE

Evaluation and mechanism investigations of titanium-fire inclusiveness in aeroengine compressor

Author information +
History +

Abstract

A large number of droplets and their products produced by titanium fire combustion in aeroengine compressor will cause burn through and non-inclusiveness failure of titanium alloy casing. This has shown great harm. In this study, a quantitative evaluation method for titanium fire inclusiveness of compressor was explored based on the mechanism of titanium alloy melt drop ablation and laser ignition technology. A test and evaluation method was established with the characteristic parameters of the melt drop penetration resistance of two configurations of TC4 titanium alloy casing, namely horizontal expansion and vertical drip. Meanwhile, the diffusion behavior of titanium fire and the critical failure conditions under simulated airflow environment were varified by experiments as well. Those results show that the mechanism of titanium alloy droplet burning through the casing lies in the local high heat concentration formed at the droplet contact interface. Under the action of heat transfer, the kinetic energy of the atoms in the base of the titanium alloy cartridge increases rapidly, forming a penetrating liquid phase, and finally causing burn-through, that is, titanium non-inclusiveness failure. When the droplet moves horizontally in the process of extended combustion, it will be affected by some mechanism such as reverse airflow, which will weaken the expansion effect. When the droplet is adhered to the surface of the casing simulation for a long time under the action of gravity or centrifugal force, the heat released is enough to burn through the titanium alloy casing. Its critical thickness is between 1.5-2 mm.

Key words

titanium alloy casing / titanium fire inclusiveness / droplet burn-through / molecular dynamics / aeroengine

Cite this article

Download Citations
Guangbao MI , Ruochen SUN , Yuehai QIU , et al. Evaluation and mechanism investigations of titanium-fire inclusiveness in aeroengine compressor. Journal of Materials Engineering. 2025, 53(1): 143-153 https://doi.org/10.11868/j.issn.1001-4381.2024.000595

References

[1]
刘闯, 陈国栋, 黄福增, 等. 航空发动机机匣包容性试验研究[J]. 航空发动机202046(3): 71-76.
LIU C CHEN G D HUANG F Z, et al. Study on aeroengine casing containment test[J]. Aeroengines202046(3): 71-76.
[2]
谭毅, 杨书仪, 左建华, 等, 面向包容性的航空发动机机匣研究综述 [J]. 航空工程进展202213(6): 17-28.
TAN Y YANG S Y ZUO J H, et al. Review of aero-engine casings containment research[J]. Advances in Aeronautical Science and Engineering202213(6): 17-28.
[3]
弭光宝,黄旭,曹京霞,等.航空发动机钛火试验技术研究分析进展[J].航空材料学报201636(3):20-26.
MI G B HUANG X CAO J X,et al.Experimental technique of titanium fire in aero-enging[J].Journal of Aeronautical Materials201636(3):20-26.
[4]
梁贤烨, 弭光宝, 李培杰, 等. 钛合金高温摩擦着火理论研究[J].物理学报202069(21): 343-355.
LIANG X Y MI G B LI P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition[J]. Acta Physica Sinica202069(21):343-355.
[5]
吴明宇, 弭光宝, 李培杰, 等. 600℃高温钛合金燃烧组织演变及机理[J].物理学报202372(16):204-222.
WU M Y MI G B LI P J, et al. Evolution and mechanism of combustion microstructure of 600℃ high temperature titanium alloy[J]. Acta Physica Sinica202372(16):204-222.
[6]
邱越海, 弭光宝, 李培杰, 等.气流速度对Ti3Al基合金摩擦起燃行为的影响[J].材料工程202452(5):17-25.
QIU Y H MI G B LI P J,et al. Influence of airflow velocity on friction ignition behavior of Ti3Al-based alloy[J].Journal of Materials Engineering202452(5):17-25.
[7]
吴明宇, 弭光宝, 李培杰, 等. 钛铝金属间化合物激光点火燃烧行为及机理[J].材料工程202452(5):1-16.
WU M Y MI G B LI P J, et al. Laser ignited burning behavior and mechanism of TiAl alloy[J]. Journal of Materials Engineering202452(5):1-16.
[8]
弭光宝, 隋楠. 一种航空发动机钛合金机匣结构防钛火验证试验方法: ZL202111420955.9[P]. 2024-06-21.
MI G B SUI N. A titanium fire proof verification test method for titanium alloy casing structure of aircraft engine: ZL202111420955.9[P]. 2024-06-21.
[9]
弭光宝, 陈航. 一种钛火试验用激光点火燃烧室: ZL201711188505.5[P]. 2017-11-23.
MI G B CHEN H. A laser ignition combustion chamber for titanium fire test: ZL201711188505.5[P]. 2017-11-23.
[10]
弭光宝, 孙圆治, 吴明宇, 等. 机器学习在航空发动机钛合金研究中的应用进展[J].航空制造技术202467(1/2): 66-78.
MI G B SUN Y Z WU M Y, et al. Applications of machine learning on aero-engine titanium alloys[J]. Aeronautical Manufacturing Technology202467(1/2): 66-78.
[11]
弭光宝,孙若晨,吴明宇,等.航空发动机钛合金分子动力学计算技术研究进展[J].航空材料学报202444(2):87-103.
MI G B SUN R C WU M Y, et al. Research progress of molecular dynamic calculation on titanium alloys for aero-engine[J]. Journal of Aeronautical Materials202444(2):87-103.
[12]
OHNUMA I FUJITA Y MITSUI H, et al. Phase equilibria in the Ti-Al binary system[J]. Acta Materialia200048(12): 3113-3123.
[13]
NOSÉ S.A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics198481: 511-519.
[14]
WILLIAM G H. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A198531(3): 1695.
[15]
THOMPSON A P METIN AKTULGA H RICHARD B, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications2022271: 108171.
[16]
STEVE P. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics1995117(1): 1-19.
[17]
ALEXANDER S.Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering201018: 015012.
[18]
FEREIDONNEJAD R MOGHADDAM A O MOADDELI M. Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems[J]. Computational Materials Science2022213: 111685.
[19]
ACKLAND G J JONES A P. Applications of local crystal structure measures in experiment and simulation[J]. Physical Review B200673: 054104.
[20]
TRAN T H DUONG D P PHAM T M H, et al. Investigation of mean-square displacement and elastic moduli of solid argon up to 85 GPa[J]. Chemical Physics2020539: 110928.

Comments

PDF(8816 KB)

Accesses

Citation

Detail

Sections
Recommended

/