Graphene coating modified separator for Li metal batteries

Fan YU, Zhenzhen DU, Jun WANG, Jiongli LI, Xudong WANG

PDF(3354 KB)
PDF(3354 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 182-190. DOI: 10.11868/j.issn.1001-4381.2024.000482
RESEARCH ARTICLE

Graphene coating modified separator for Li metal batteries

Author information +
History +

Abstract

Separator modification represents a prevalent approach to inhibiting lithium dendrite growth and enhancing battery safety. In this study, lithium metal serves as the negative electrode, LiFePO4 as the cathode, and a graphene coating modified polypropylene separator is employed. Lithium batteries are assembled and undergo rigorous testing, including cycling tests, rate capability tests, electrochemical impedance spectroscopy (EIS) measurements, and morphological analysis of the lithium negative electrode before and after cycling. The primary focus is to investigate the influence of positioning the graphene coating towards either the cathode or the negative electrode on battery performance. Cycle performance results indicate that when the graphene coating faces the negative electrode, the battery exhibits an initial discharge-specific capacity of 168 mAh/g at 0.2 C. After enduring 500 cycles, the discharge-specific capacity remains stable at 154 mAh/g, yielding a capacity retention rate of 91.67%. EIS analysis further reveals that the battery with the graphene coating oriented towards the negative electrode exhibits decreased interfacial resistance and improved reaction kinetics. Moreover, the surface of the cycled lithium negative electrode remains smooth and uniform, devoid of significant lithium dendrite formation. Consequently, lithium batteries configured with the graphene coating facing the negative electrode demonstrate superior cycle performance and heightened safety.

Key words

modified separator / graphene / lithium battery / dendrite

Cite this article

Download Citations
Fan YU , Zhenzhen DU , Jun WANG , et al . Graphene coating modified separator for Li metal batteries. Journal of Materials Engineering. 2025, 53(7): 182-190 https://doi.org/10.11868/j.issn.1001-4381.2024.000482

References

[1]
WEN Y DING J LIU J, et al. A separator rich in SnF2 and NO 3 - directs an ultra-stable interface toward high performance Li metal batteries[J]. Energy & Environmental Science202316(7): 2957-2967.
[2]
ZHANG W FAN Q ZHANG D, et al. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries[J]. Nano Energy2022102: 107677.
[3]
WANG J HU H DUAN S, et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode[J]. Advanced Functional Materials202232(12): 2110468.
[4]
XIE Y HUANG Y ZHANG Y, et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes[J]. Nature Communications202314(1): 2883.
[5]
REN W ZHU K ZHANG W, et al. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator[J]. Advanced Functional Materials202333(34): 2301586.
[6]
AN Q WANG H ZHAO G, et al. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes[J]. Energy & Environmental Materials20236(2): e12345.
[7]
SONG J JIANG Y LU Y, et al. A forceful “dendrite-killer” of polyoxomolybdate with reusability effectively dominating dendrite-free lithium metal anode[J]. Small202319(40): 2301740.
[8]
TANG W ZHAO T WANG K, et al. Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators[J]. Advanced Functional Materials202434(18): 2314045.
[9]
KIM H J UMIROV N PARK J S, et al. Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries[J]. Energy Storage Materials202246: 76-89.
[10]
LEE H G KIM S Y LEE J S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles[J]. npj Computational Materials20228(1): 960-972.
[11]
LI H ZHANG F WEI W, et al. Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries[J]. Advanced Energy Materials202313(28): 2301023.
[12]
ZHANG C XIE J ZHAO C, et al. Regulating the lithium ions’ local coordination environment through designing a COF with single atomic Co site to achieve dendrite-free lithium-metal batteries[J]. Advanced Materials202335(40): 2304511.
[13]
FAN Y LIAO J LUO D, et al. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal2023453: 139903.
[14]
JIANG W WANG S WANG Y, et al. Silica-modified 3D porous copper current collectors toward stable lithium metal anodes[J]. Energy Technology202311(6): 2300053.
[15]
CHEN H REN B WANG Y, et al. The fabrication of high-performance α-Al2O3 coated PE separator for lithium-ion batteries based on multiple hydrogen bonds[J]. Electrochimica Acta2023465: 142985.
[16]
MUCHAKAYALA R YARRAMSETTI S MARAM P S, et al. Modified ceramic coated polyethylene separator-a strategy for using lithium metal as anode with superior electrochemical performance and thermal stability[J]. Journal of Energy Storage202368: 107687.
[17]
SU M M CHEN Y F WANG S Q, et al. Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries[J]. Chinese Chemical Letters202334(5): 107553.
[18]
ZU C LI J CAI B, et al. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes[J]. Journal of Power Sources2023555: 232336.
[19]
XU S ZHAO T YE Y, et al. A designed lithiophilic carbon channel on separator to regulate lithium deposition behavior[J]. Small202218(2): 2104390.
[20]
SI J LI X REN N, et al. Bifunctional separators with high transference number and uniform ion flux for dendrite-free lithium metal batteries[J].Journal of Power Sources2024599: 234225.
[21]
高春晖, 李宇杰, 孙巍巍, 等. 半限域层次孔炭三维锂负极的构筑及性能[J]. 材料工程202351(8): 170-180.
GAO C H LI Y J SUN W W, et al. Construction and performance of semi-confined hierarchical porous carbon three-dimensional lithium anode[J]. Journal of Materials Engineering202351(8): 170-180.
[22]
PARK M, WOO S, SEO J, et al. Directing the uniform and dense Li deposition via graphene-enhanced separators for high-stability Li metal batteries[J]. Electrochimica Acta2024495: 144426.

Comments

PDF(3354 KB)

Accesses

Citation

Detail

Sections
Recommended

/