
Effect of hydrogen-induced solid-state phase transformation on mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy
Wenjian ZHENG, Yu WANG, Yang YU, Daochen FENG, Zhen YU, Wenjun WANG, Dejun YAN, Jianguo YANG
Effect of hydrogen-induced solid-state phase transformation on mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy
AlCoCrFeNi2.1 eutectic high entropy alloy has excellent mechanical properties and promising applications in fields such as hydrogen storage and transportation. The surface of the alloy is hydrogenated by electrochemical hydrogenation, and tensile tests are carried out on H-charged and H-free specimens to compare and analyze the fracture morphology characteristics, and the effect of hydrogen-induced precipitated phase evolution on the mechanical properties of the alloy is studied. The results show that compared with the samples without hydrogen charging, the yield strength of the hydrogen charging solution samples with sulfuric acid concentrations of 0.5 mol/L and 1.0 mol/L decreases by 14.60% and 20.22%, respectively, and the tensile strength decreases by 15.50% and 25.15%, respectively. Additionally, the mechanical properties of the alloy further decrease with the increase of the hydrogen ion concentration in the hydrogen-charged solution, and the fracture region near the surface shows more obvious brittle fracture characteristics. The precipitated phase, which undergoes a phase transition after hydrogen charging, remains on the surface of the BCC phase during fracture to form a higher and denser raised structure, and a structure distinct from the two phases is also found at the phase boundary. The evolution of hydrogen-induced nanoprecipitated phases leads to a decrease in the overall mechanical properties of the alloy.
eutectic high entropy alloy / electrochemical hydrogen charging / mechanical property / precipitate evolution
[1] |
滕全全, 汪悦, 有移亮, 等. 充氢Cr-Mo钢变形过程的声发射特征[J]. 材料工程, 2017, 45(10): 138-144.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
邱贺方, 袁晓静, 罗伟蓬, 等. 增材制造AlCoCrFeNi2.1共晶高熵合金研究进展[J]. 材料工程, 2024, 52(1): 70-82.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
冯道臣, 郑文健, 高国奔, 等. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43-48.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
焦世舜, 汪佐瑾, 周珍珍, 等.铸态AlCoCrFeNi2.1共晶高熵合金的拉伸断裂机理[J]. 材料热处理学报, 2022, 43(11): 66-76.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
/
〈 |
|
〉 |