Performance of high-strength and heat-resistant cast aluminum alloy and its complex shell castings for aircraft engines

Juhong QIE, Feng XIE, Chao FENG, Pinghai WANG, Tengfei YU, Chaoyang YANG, Honglei XI, Wenlong XIAO, Chaoli MA

PDF(4161 KB)
PDF(4161 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (1) : 186-194. DOI: 10.11868/j.issn.1001-4381.2024.000284
RESEARCH ARTICLE

Performance of high-strength and heat-resistant cast aluminum alloy and its complex shell castings for aircraft engines

Author information +
History +

Abstract

To meet the application requirement of advanced aviation engines for complex shell castings of high-strength and heat-resistant aluminum alloys, the process and mechanical properties of a new type of the Al-Si-Cu-Mg-Sc high-strength and heat-resistant aluminum alloy are analysed in comparison with ZL101A and ZL205A cast aluminum alloys. Design and experimental verification of the metal casting process for the complex casing of the oil pump are carried out by using the high-strength and heat-resistant aluminum alloy, and the quality of the casting products is evaluated. The results indicate that the new high-strength and heat-resistant Al-Si-Cu-Mg-Sc alloy shows better casting fluidity and hot cracking resistance than the ZL205A high-strength cast Al alloy. The qualification rate of the complex shell of its metal casting oil pump is comparable to that of the same type of shell ZL101A. The average tensile strengths at room temperature of the separated test bar of casting and test specimen from casting itself of the new alloy are higher than 420 MPa, which are significantly higher than that of ZL101A alloy, while the tensile strengths at 250 ℃ are superior to ZL205A alloy. The surface quality, internal quality, airtightness, and pressure resistant performance of the casting case all meet the design requirement of the product.

Key words

high-strength and heat-resistant aluminium alloy / Al-Si-Cu-Mg / castability / mechanical property / aeroengine oil pump case

Cite this article

Download Citations
Juhong QIE , Feng XIE , Chao FENG , et al . Performance of high-strength and heat-resistant cast aluminum alloy and its complex shell castings for aircraft engines. Journal of Materials Engineering. 2025, 53(1): 186-194 https://doi.org/10.11868/j.issn.1001-4381.2024.000284

References

[1]
吴思,韩定邦,常海,等 .典型工况下飞机液压系统温度特性仿真分析[J].液压与气动2020(4):170-176.
WU S HAN D B CHANG H, et al. Temperature characteristic simulation and analysis of aircraft hydraulic system under typical working conditions[J].Chinese Hydraulics & Pneumatics2020(4):170-176.
[2]
中国航空材料手册委员会. 中国航空材料手册第3卷:铝合金 镁合金[M].北京:中国标准出版社,2002:367-375.
China Aeronautical Materials Handbook Committee. China aeronautical materials handbook volume 3:aluminium alloys magnesium alloys[M]. Beijing: China Standard Press, 2002:367-375.
[3]
赵玉厚,周敬恩,严文 .增强相Al3Ti状态对Al3Ti/ZL101原位复合材料力学性能的影响[J].材料工程2001(5):3-8.
ZHAO Y H ZHOU J E YAN W. Influence of the condition of reinforcing phase Al3Ti on mechanical properties of Al3Ti/ZL101 composite[J]. Journal of Materials Engineering2001(5):3-8.
[4]
洪润洲,周永江,姚惟斌 .时效工艺对ZL101A合金性能的影响[J].材料工程2004(10):39-41.
HONG R Z ZHOU Y J YAO W B. Effect of aging process on mechanical properties of ZL101A alloy[J]. Journal of Materials Engineering2004(10):39-41.
[5]
陈邦峰,贾泮江 .ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J].材料工程2010(9):1-6.
CHEN B F JIA P J. Fracture surface and chemical composition of segregation defect of ZL205A casting aluminum alloy[J]. Journal of Materials Engineering2010(9):1-6.
[6]
杜旭初,洪润洲,刘建军,等 .大型复杂高强度ZL205A铝合金骨架铸件的研制[J].铸造201463(4):371-374.
DU X C HONG R Z LIU J J,et al. Research on casting technique of large complex high strength ZL205A alloy skeleton casting[J]. China Foundry201463(4):371-374.
[7]
贾泮江,陈邦峰 .ZL205A合金高强优质铸件在大飞机上的应用[J].材料工程2009(1):77-80.
JIA P J CHEN B F. Application of ZL205A high strength and high-quality casting in large aircraft[J]. Journal of Materials Engineering2009(1):77-80.
[8]
谭芳,陈治海 .ZL205A合金熔模铸造工艺研究[J]. 航空材料学报200323(): 113-117.
摘要
增刊
TAN F CHEN Z H. Research on investment casting process of ZL205A[J]. Journal of Aeronautical Materials200323(): 113-117.
Suppl
[9]
张华炜,刘悦,范同祥 .铸造耐热铝合金的研究进展及展望[J].材料导报202236(2): 149-157.
ZHANG H W LIU Y FAN T X. Progress and prospect of cast heat-resistant aluminum alloy[J].Materials Reports202236(2): 149-157.
[10]
张春波,王祝堂. 航空航天器铸造铝合金(1)[J].轻合金加工技术201240(11):5-18.
ZHANG C B WANG Z T. Casting aluminium alloy used for aircraft and spacecraft (1) [J]. Light Alloy Fabrication Technology201240(11): 5-18.
[11]
RAHIMIAN M AMIRKHANLOU S BLAKE P, et al. Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys[J]. Materials Science and Engineering:A2018721: 328-338.
[12]
SHAHA S K CZERWINSKI F KASPRZAK W, et al. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Mo and Mn[J]. Materials Science and Engineering: A2017684:726-736.
[13]
XI H L XIAO W L LI H, et al. Effects of submicron-sized TiC particles on the microstructure modification and mechanical properties of Al-Si-Mg alloy[J]. Journal of Alloys and Compounds2023968: 171963.
[14]
YI G LI H ZANG C Y, et al. Remarkable improvement in strength and ductility of Al-Cu foundry alloy by submicron-sized TiC particles[J]. Materials Science and Engineering: A2022855: 143903.
[15]
车欣,陈立佳,李锋 .Sc对金属型铸造Al-Si-Cu-Mg合金疲劳行为的影响[J]. 沈阳工业大学学报201234(4): 402-406.
CHE X CHEN L J LI F. Influence of Sc on fatigue behavior of permanent-mould casting Al-Si-Cu-Mg alloy[J]. Journal of Shenyang University of Technology201234(4):402-406.
[16]
陈大辉,汤进军,邰红岩,等. 发动机缸盖用新型Al-Si-Cu-Mg铝合金材料[J].车用发动机2011(6):85-89.
CHEN D H TANG J J TAI H Y, et al. New Al-Si-Cu-Mg aluminum alloy material for engine cylinder head[J]. Vehicle Engine2011(6):85-89.
[17]
刘闪光,李国爱,罗传彪,等. Sc元素对ZL205A合金组织和力学性能的影响[J].材料工程202048(1):84-91.
LIU S G LI G A LUO C B, et al. Effect of Sc on microstructure and mechanical properties of ZL205A alloy[J]. Journal of Materials Engineering202048(1):84-91.
[18]
高一涵,刘刚,孙军 .耐热铝基合金研究进展:微观组织设计与析出策略[J].金属学报202157(2):129-149.
GAO Y H LIU G SUN J. Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy[J]. Acta Metallurgica Sinica202157(2): 129-149.
[19]
肖文龙,郗洪雷,李恒,等 .一种高强耐热铸造铝合金及其热处理方法: ZL202211162428.7[P]. 2022-12-02.
XIAO W L XI H L LI H, et al. A high strength and heat resistance casting aluminum alloy and its heat treatment method: ZL202211162428.7 [P]. 2022-12-02.
[20]
LI Y LI H X KATGERMAN L, et al. Recent advances in hot tearing during casting of aluminium alloys[J]. Progress in Materials Science2021117: 100741.
[21]
KOU S. A criterion for cracking during solidification[J]. Acta Materialia201588: 366-374.
[22]
隋育栋 .Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究[D].上海:上海交通大学,2016
SUI Y D. Study on the microstructural and elevated temperature properties of cast Al-Si-Cu-Ni-Mg alloys[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[23]
HU B LI D J LI Z X, et al. Hot tearing behavior in double ternary eutectic alloy system: Al-Mg-Si alloys[J]. Metallurgical and Materials Transactions A202152(2): 789-805.
[24]
WANG R WANG D NAGAUMI H, et al. The novel strategy for enhancing mechanical properties and corrosion resistance via regulating multi-scale microstructure characteristics in Al-Si-Cu-Mg-Zr cast alloy[J]. Journal of Materials Science & Technology2024180:102-117.
[25]
WEI Z FANG N ZOU C, et al. Enhancing mechanical performances by unconventional Si precipitates obtained in pressure-induced Al-Si-Cu-(Mg) solid solutions[J]. Materials Science and Engineering: A2023877: 145123.
[26]
ZHANG M WANG J WANG B, et al. Improving mechanical properties of Al-Si-Cu-Mg alloys by microalloying Sc using thermodynamic calculations[J]. Calphad202276: 102394.
[27]
FARKOOSH A R JAVIDANI M HOSEINI M, et al. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: thermodynamic assessment and experimental investigation for alloy design[J]. Journal of Alloys and Compounds2013551: 596-606.
[28]
吴士平,王晔,陈立亮,等 .汽车铝合金排水管倾转铸造数值模拟[J].特种铸造及有色合金201131(6):514-516.
WU S P WANG Y CHEN L L, et al. Numerical simulation of tilting process of automobile drain pipe[J]. Special Casting & Nonferrous Alloys201131(6):514-516.
[29]
王娟,韩虎,邵正国 .齿轮箱体气孔的形成原因分析及改善措施[J].铸造201463(11):1185-1187.
WANG J HAN H SHAO Z G. Cause analysis and improvement measures of gear box body blowhole[J]. China Foundry201463(11):1185-1187.
[30]
秦红斌,黄攀,高晓灵,等 .基于数值模拟的卡钳铸造工艺优化设计[J].特种铸造及有色合金201838(5):505-508.
QIN H B HUANG P GAO X L, et al. Optimization of casting process for caliper based on numerical simulation[J]. Special Casting & Nonferrous Alloys201838(5):505-508.

Comments

PDF(4161 KB)

Accesses

Citation

Detail

Sections
Recommended

/