Effects of UiO-66 metal clusters and defects on electrochemical performances of lithium-sulfur battery separators

Yingmei ZHAO, Yuqing ZHAO, Xingyu ZHOU, Haixin LI, Hu CHENG, Jinliang ZHUANG

PDF(3890 KB)
PDF(3890 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 191-200. DOI: 10.11868/j.issn.1001-4381.2024.000282
RESEARCH ARTICLE

Effects of UiO-66 metal clusters and defects on electrochemical performances of lithium-sulfur battery separators

Author information +
History +

Abstract

Two metal-organic frameworks (MOFs), Ce-UiO-66, and Zr-UiO-66, are synthesized using cerium ammonium nitrate (Ce(NH42(NO36) and zirconium tetrachloride (ZrCl4) as metal salts, and 1,4-benzenedicarboxylic acid (H2BDC) as the organic linker. The crystal structure and morphology of the MOFs are characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The MOFs-modified functional separators are prepared by loading Ce-UiO-66 and Zr-UiO-66 onto one side of commercial Celgard PP separators via vacuum filtration. The electrochemical performance of lithium-sulfur batteries is assembled and tested. The results show that the Ce-UiO-66 modified separator batteries demonstrates optimal electrochemical performance. At a rate of 0.2 C, the initial discharge capacity reaches 1047 mAh·g-1, with a capacity retention rate of 77.5% after 200 cycles and Coulombic efficiency approaching 100%. Under various current rates, the Ce-UiO-66 modified cells deliver discharge capacities of 1281, 945, 768.1, 673.2, 604.7 mAh·g-1 at 0.1, 0.2, 0.5, 1, 2 C, respectively. When returning to 0.1 C, the capacity recovers to 951.6 mAh·g-1 with a capacity retention rate of 74.3%. The above results demonstrate that the redox-active Ce₆-oxo clusters in Ce-UiO-66 can effectively catalyze the conversion reactions of lithium polysulfides (LiPSs) and enhance the redox kinetics. Furthermore, Ce-UiO-66 possesses abundant defects and unsaturated coordination sites, which can effectively anchor LiPSs, mitigate the shuttle effect, and further enhance the electrochemical performance of batteries.

Key words

lithium-sulfur battery / metal-organic framework / separator / polysulfide / shuttle effect

Cite this article

Download Citations
Yingmei ZHAO , Yuqing ZHAO , Xingyu ZHOU , et al . Effects of UiO-66 metal clusters and defects on electrochemical performances of lithium-sulfur battery separators. Journal of Materials Engineering. 2025, 53(7): 191-200 https://doi.org/10.11868/j.issn.1001-4381.2024.000282

References

[1]
ZHANG Y ZHAO Y KURMANBAYEYA I, et al. Sulfur/nitrogen doped carbon nanotube binder-free electrode for high performance Li/S batteries[C]∥17th International Meeting on Lithium Batteries (IMLB 2014). Como, Italy: The Electrochemical Society, 2014: 517.
[2]
赵基钢, 王赫, 郑俊生. 锂离子电容器正极材料的研究进展[J].材料工程202351(9): 28-36.
ZHAO J G WANG H ZHENG J S. Research progress of cathode materials for lithium ion capacitors[J]. Journal of Materials Engineering202351(9): 28-36.
[3]
CHEN M QI M YIN J, et al. Embedding sulfur into N-doped carbon nanospheres as enhanced cathode for high-performance lithium-sulfur batteries[J]. Materials Research Bulletin201796: 335-339.
[4]
ZHANG L QIAN T ZHU X, et al. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chemical Society Reviews201948(22): 5432-5453.
[5]
HE Y QIAO Y CHANG Z, et al. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries[J]. Energy & Environmental Science201912(8): 2327-2344.
[6]
CHONG Y L ZHAO D D WANG B, et al. Metal-organic frameworks functionalized separators for lithium-sulfur batteries[J]. The Chemical Record202222(10): e202200142.
[7]
LI S LIN J XIONG W, et al. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage[J]. Coordination Chemistry Reviews2021438: 213872.
[8]
HONG X J SONG C L YANG Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano201913(2): 1923-1931.
[9]
JAMES S L. Metal-organic frameworks[J]. Chemical Society Reviews200332(5): 276-288.
[10]
FURUKAWA H CORDOVA K E O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science2013341(6149): 1230444.
[11]
庄金亮, 薛云, 申妍铭, 等.液相外延法制备金属-有机骨架薄膜及其应用[J]. 贵州师范大学学报(自然科学版)202038(5): 104-118.
ZHUANG J L XUE Y SHEN Y M,et al .Liquid phase epitaxial growth of metal-organic frameworks thin films and applications[J]. Journal of Guizhou Normal University (Natural Sciences)202038(5): 104-118.
[12]
JACOBSEN J IENCO A D’AMATO R, et al. The chemistry of Ce-based metal-organic frameworks[J]. Dalton Transactions202049(46): 16551-16586.
[13]
XU W J HUANG B X LI G, et al. Donor-acceptor mixed-naphthalene diimide-porphyrin MOF for boosting photocatalytic oxidative coupling of amines[J]. ACS Catalysis202313(8): 5723-5732.
[14]
VALVERDE-GONZALEZ A PINTADO-SIERRA M RASERO-ALMANSA A, et al. Amino-functionalized zirconium and cerium MOFs: catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-alkylation of amines[J]. Applied Catalysis A: General2021623: 118287.
[15]
HOU W CHEN C WANG Y, et al. Cerium versus zirconium UiO66 metal-organic frameworks coupled with CdS for H2 evolution under visible light[J]. Catalysis Science & Technology202212(12): 4012-4019.
[16]
CAMPANELLI M DEL GIACCO T DE ANGELIS F, et al. Solvent-free synthetic route for cerium (Ⅳ) metal-organic frameworks with UiO-66 architecture and their photocatalytic applications[J]. ACS Applied Materials & Interfaces201911(48): 45031-45037.
[17]
LI Q ZHU H TANG Y, et al. Chemically grafting nanoscale UIO-66 onto polypyrrole nanotubes for long-life lithium-sulfur batteries[J].Chemical Communications201955(80):12108-12111.
[18]
LIU X WANG S WANG A, et al. A new cathode material synthesized by a thiol-modified metal-organic framework (MOF) covalently connecting sulfur for superior long-cycling stability in lithium-sulfur batteries[J]. Journal of Materials Chemistry A20197(42): 24515-24523.
[19]
QIU X ZHU Y ZHANG X, et al. Cerium-based metal-organic frameworks with UiO architecture for visible light-induced aerobic oxidation of benzyl alcohol[J]. Solar RRL20204(8): 1900449.
[20]
REN J LEDWABA M MUSYOKA N M, et al. Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews2017349: 169-197.
[21]
LI W QIAN J ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer‐by‐layer structure[J]. Advanced Science20196(16): 1802362.
[22]
ZHANG Y GE X KANG Q, et al. Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries[J]. Chemical Engineering Journal2020393: 124570.
[23]
PU J SHEN Z ZHENG J, et al. Multifunctional Co3S4@ sulfur nanotubes for enhanced lithium-sulfur battery performance[J]. Nano Energy201737: 7-14.
[24]
JIN H G WANG M WEN J X, et al. Oxygen vacancy-rich mixed-valence cerium MOF: an efficient separator coating to high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces202113(3): 3899-3910.
[25]
WANG X WANG Y WU F, et al. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium-sulfur batteries[J]. Applied Surface Science2022596: 153628.
[26]
FAN Y NIU Z ZHANG F, et al. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator[J]. ACS Omega20194(6): 10328-10335.
[27]
HAN J GAO S WANG R, et al. Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure[J]. Journal of Materials Chemistry A20208(14): 6661-6669.
[28]
WANG Z HUANG W HUA J, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods20204(7): 2000082.
[29]
KIM S H YEON J S KIM R, et al. A functional separator coated with sulfonated metal-organic framework/Nafion hybrids for Li-S batteries[J]. Journal of Materials Chemistry A20186(48): 24971-24978.
[30]
SURIYAKUMAR S STEPHAN A M ANGULAKSHMI N, et al. Metal-organic framework@SiO2 as permselective separator for lithium-sulfur batteries[J]. Journal of Materials Chemistry A20186(30): 14623-14632.
[31]
HE Y CHANG Z WU S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF‐based membrane in Li-S batteries[J]. Advanced Energy Materials20188(34): 1802130.
[32]
WU F ZHAO S CHEN L, et al. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries[J]. Energy Storage Materials201814: 383-391.

Comments

PDF(3890 KB)

Accesses

Citation

Detail

Sections
Recommended

/