Thin-walled effect of microstructure of third-generation single crystal superalloy DD9

Wanpeng YANG, Jiarong LI, Shizhong LIU, Jinqian ZHAO, Xiaoguang WANG, Liang YANG, Rui WANG, Qiao CHEN

PDF(3618 KB)
PDF(3618 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (1) : 55-64. DOI: 10.11868/j.issn.1001-4381.2024.000210
RESEARCH ARTICLE

Thin-walled effect of microstructure of third-generation single crystal superalloy DD9

Author information +
History +

Abstract

The microstructure and thin-walled effect of different samples (double-wall ultra-cooling turbine blades, combined cooling turbine blades, investment casting thin-walled specimen, and round bar specimen) of the third-generation single crystal superalloy DD9 are investigated by optical microscope, field emission scanning electron microscope, and electron probe apparatus. The results show that there are differences in the microstructures of the four specimens. When the section sizes are the same, the as-cast primary dendrite arm spacing, the sizes of γ′ phases, and the dendrite segregation of the as-cast and heat- treated specimens of DD9 single crystal turbine blades are all larger than those of the investment casting thin-walled specimens. After full heat treatment, the sizes of the γ′ phases of single crystal turbine blades with the same cross-sectional size are similar to those of investment casting thin-walled specimens. The as-cast primary dendrite arm spacing, the sizes of γ′ phases, and the dendrite segregation of the as-cast and heat-treated thin-walled specimens of DD9 alloy all decrease with the decrease of the cross-sectional size.

Key words

third-generation single crystal superalloy / DD9 / turbine blade / cross-sectional size / thin-walled effect

Cite this article

Download Citations
Wanpeng YANG , Jiarong LI , Shizhong LIU , et al . Thin-walled effect of microstructure of third-generation single crystal superalloy DD9. Journal of Materials Engineering. 2025, 53(1): 55-64 https://doi.org/10.11868/j.issn.1001-4381.2024.000210

References

[1]
高至远, 陈皓晖, 陈新, 等. DD6单晶高温合金模拟薄壁试样超高频振动疲劳[J]. 航空材料学报202343(2): 98-106.
GAO Z Y CHEN H H CHEN X, et al. Ultra-high frequency vibration fatigue of DD6 single crystal superalloy simulating thin-walled specimens[J]. Journal of Aeronautical Materials202343(2): 98-106.
[2]
ZHAO Y S ZHANG J SONG F Y, et al. Effect of trace boron on microstructural evolution and high temperature creep performance in Re-containing single crystal superalloys[J]. Progress in Natural Science: Materials International202030(3): 371-381.
[3]
刘大响,陈光. 航空发动机:飞机的心脏[M]. 北京:航空工业出版社,2003.
LIU D X CHEN G. Aeroengine: heart of aircraft[M]. Beijing: Aviation Industry Press, 2003.
[4]
刘巧沐,李园春. 航空发动机材料及工艺发展浅析[J]. 航空动力2021(6):1-9.
LIU Q M LI Y C. Analysis to development of aero engine materials and processes[J]. Aerospace Power2021(6): 1-9.
[5]
DUHL D N. Directionally solidified superalloys:superalloys Ⅱ[M]. New York: John Wiley, 1987.
[6]
韩希鹏,管文彪,宋克强, 等. 铸造高温合金论文集[M]. 北京:中国科学技术出版社,1993.
HAN X P GUAN W B SONG K Q, et al. Proceedings of cast superalloys[M]. Beijing: China Science and Technology Press, 1993.
[7]
SEETHARAMAN V CETEL A D. Thickness debit in creep properties of PWA 1484[C]∥Superalloys 2004. Seven Springs, PA: the Minerals, Metals & Materials Society, 2004: 207-214.
[8]
HÜTTNER R VÖLKL R GABEL J, et al. Creep behavior of thick and thin walled structures of a single-crystal nickel-base superalloy at high temperatures-experimental method and results[C]∥Superalloys 2008. Seven Springs, PA: the Minerals, Metals & Materials Society, 2008: 719-723.
[9]
HÜTTNER R GABEL J GLATZEL U, et al. First creep results on thin-walled single-crystal superalloys[J]. Materials Science and Engineering:A2009510/511:307-311.
[10]
刘世忠,李嘉荣,李骋,等. 第二代单晶高温合金DD6的薄壁持久性能[J]. 钢铁研究学报200315():276-278.
摘要
增刊1
LIU S Z LI J R LI C, et al. Stress-rupture property of thin-wall specimen for single crystal superalloy DD6[J]. Journal of Iron and Steel Research200315(): 276-278.
Suppl 1
[11]
刘维维,李影,刘世忠,等. [011]取向DD6单晶高温合金薄壁持久性能[J].材料工程2011(8):24-27.
LIU WW LI Y LIU S Z, et al. Thin-wall stress rupture properties of single crystal superalloy DD6 with [011] orientation[J].Journal of Materials Engineering2011(8): 24-27.
[12]
YANG L LI J R. Effects of section size on the stress rupture lives of the machined thin-walled slab specimen of DD6 single crystal superalloy at 980 ℃/250 MPa[J]. Advanced Materials Research2013816/817: 90-95.
[13]
余昌奎,于金江,仉凤江,等. DD499单晶合金持久性能薄壁效应[J]. 铸造201463(5):479-483.
YU C K YU J J ZHANG F J, et al. Influence of thin wall on the stress rupture properties of DD499 single crystal superalloy[J]. Foundry201463(5): 479-483.
[14]
张泽海,于金江,石峰,等. DD499单晶合金拉伸性能薄壁效应[J]. 铸造201463(8):781-787.
ZHANG Z H YU J J SHI F, et al.Influence of thin wall on the tensile properties of DD499 single crystal superalloy[J].Foundry201463(8):781-787.
[15]
李剑锋,周铁涛,燕平, 等.一种镍基单晶高温合金凝固组织的截面尺寸效应[J]. 材料工程2009(6):20-25.
LI J F ZHOU T T YAN P, et al.Effects of section sizes on microstructure of a nickel-base single crystal superalloy[J]. Journal of Materials Engineering2009(6):20-25.
[16]
YANG L LI J R. Effect of section size on the microstructure of thin-walled specimen of DD6 single crystal superalloy[J]. Rare Metal Materials and Engineering201544(6): 1363-1368.
[17]
杨亮,李嘉荣,金海鹏,等. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程2014(11):15-22.
YANG L LI J R JIN H P, et al. Numerical simulation on directional solidification process of DD6 single crystal superalloy thin-walled specimen[J]. Journal of Materials Engineering2014(11):15-22.
[18]
WAHL J B HARRIS K. New single crystal superalloys, CMSX®-7 and CMSX®-8[C]∥Superalloys 2012.Seven Springs, PA:the Minerals, Metals & Materials Society, 2012:179-188.
[19]
LIU Z Q YUE Z F ZHI X Z, et al. Influence of dimension variation on strength and fatigue life of single crystal cooled blade[J]. Rare Metal Materials and Engineering201342(8):1563-1567.
[20]
刘维维,朱鸥. 航空发动机用单晶叶片薄壁效应研究[J]. 铸造技术201738(11):2571-2575.
LIU W W ZHU O.Thin-walled effect for single-crystal blades in aero engines[J]. Foundry Technology201738(11):2571-2575.
[21]
李嘉荣,刘世忠,史振学,等. 第三代单晶高温合金DD9[J]. 钢铁研究学报201123():337-340.
摘要
增刊2
LI J R LIU S Z SHI Z X, et al. Third generation single crystal superalloy DD9[J]. Journal of Iron and Steel Research201123():337-340.
Suppl 2
[22]
LI J R LIU S Z WANG X G, et al. Development of a low-cost third generation single crystal superalloy DD9[C]∥Superalloys 2016.Seven Springs, PA:the Minerals, Metals & Materials Society, 2016:57-63.
[23]
屈敏,刘林,唐峰涛, 等.试样直径对Al-Cu合金定向凝固温度梯度和一次枝晶间距的影响[J]. 中国有色金属学报200818(2):282-287.
QU M LIU L TANG F T, et al. Effect of Al-Cu alloys diameter on thermal gradient and primary dendrite arm spacing during directional solidification[J]. Transactions of Nonferrous Metals Society of China200818(2):282-287.
[24]
李嘉荣,熊继春,唐定中.先进高温结构材料与技术[M]. 北京:国防工业出版社,2012.
LI J R XIONG J C TANG D Z. Advanced high temperature structural materials and technologies[M]. Beijing: National Defense Industry Press, 2012.
[25]
郑启,侯桂臣,孙晓峰, 等.单晶凝固组织的样品尺寸效应[J].材料工程2002(3):24-27.
ZHENG Q HOU G C SUN X F, et al. Effect of sample size on solidified SC structure[J]. Journal of Materials Engineering2002(3): 24-27.
[26]
LIU W W TANG D Z. Effect of cooling rate after solution on microstructure and creep properties of single crystal superalloy DD3[J].Rare Metals201130(1):396-400.
[27]
张宏炜,陈荣章.一种定向凝固高温合金的薄壁效应研究[J].金属学报199733(4):370-374.
ZHANG H W CHEN R Z. Thin-wall effect of a directionally solidified superalloy[J]. Acta Metallurgica Sinica199733(4):370-374.

Comments

PDF(3618 KB)

Accesses

Citation

Detail

Sections
Recommended

/