Research progress in non-aqueous electrolyte for fast-charging sodium-ion batteries

Shuping WANG, Qijun LIU, Changhao LI, Ziqi ZENG, Binbin ZHANG, Jia XIE

PDF(2592 KB)
PDF(2592 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 29-41. DOI: 10.11868/j.issn.1001-4381.2024.000185
INDUSTRIALIZATION OF Na-ION BATTERIES COLUMN

Research progress in non-aqueous electrolyte for fast-charging sodium-ion batteries

Author information +
History +

Abstract

Sodium-ion batteries have garnered significant attention owing to their abundant sodium reserves, cost-effectiveness, and operational principles akin to lithium-ion batteries, exhibiting immense potential for large-scale energy storage applications. The advancement of sodium-ion batteries with rapid charge-discharge capabilities can effectively cater to frequency modulation needs in large-scale energy storage systems. As a pivotal component, the electrolyte in sodium-ion batteries plays a crucial role in electrode/electrolyte interface reactions and significantly influences the fast-charging characteristics of these batteries. This paper delve into the opportunities and challenges associated with fast-charging electrolytes in sodium-ion batteries. Furthermore, we discuss the intimate relationship between the fast-charging performance of sodium-ion batteries and the properties of the electrolyte, focusing on the electrolyte’s transmission characteristics and electrochemical stability. Lastly, we summarize the current development status of fast-charging electrolytes based on various solvent systems and propose a general design strategy. The comprehensive analysis presented in this paper offers valuable insights and guidance for the research and development of sodium-ion batteries with rapid charge-discharge capabilities.

Key words

sodium ion batteries / scale energy storage / electrolyte / fast-charging / interfacial reaction

Cite this article

Download Citations
Shuping WANG , Qijun LIU , Changhao LI , et al . Research progress in non-aqueous electrolyte for fast-charging sodium-ion batteries. Journal of Materials Engineering. 2025, 53(7): 29-41 https://doi.org/10.11868/j.issn.1001-4381.2024.000185

References

[1]
ZHANG J WANG D W LV W, et al. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges [J]. Advanced Energy Materials20188(26): 1801361.
[2]
HUANG Y X ZHAO L Z LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application [J]. Advanced Materials201931(21): 1808393.
[3]
张福明,王静,张鹏,等.有机电解液在钠离子电池中的研究进展[J].材料工程202149(1):11-22.
ZHANG F M WANG J ZHANG P, et al. Research progress of organic electrolyte for sodium ion battery [J]. Journal of Materials Engineering202149(1): 11-22.
[4]
ZHANG J LI J WANG H, et al. Research progress of organic liquid electrolyte for sodium ion battery [J]. Frontiers in Chemistry202311:1253959.
[5]
PONROUCH A MARCHANTE E COURTY M, et al. In search of an optimized electrolyte for Na-ion batteries [J]. Energy & Environmental Science20125(9): 8572-8583.
[6]
RUIZ-MARTINEZ D KOVACS A GOMEZ R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries [J]. Energy & Environmental Science201710(9): 1936-1941.
[7]
BROUX T FAUTH F HALL N, et al. High rate performance for carbon-coated Na3V2(PO42F3 in Na-ion batteries [J]. Small Methods20193(4): 1800215.
[8]
XU Y N WEI Q L XU C, et al. Layer-by-layer Na3V2(PO43 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode [J]. Advanced Energy Materials20166(14): 1600389.
[9]
LAMPRECHT X SPECK F MARZAK P, et al. Electrolyte effects on the stabilization of prussian blue analogue electrodes in aqueous sodium-ion batteries [J]. ACS Applied Materials & Interfaces202214(2): 3515-3525.
[10]
QIN M S REN W H MENG J S, et al. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly [J]. ACS Sustainable Chemistry & Engineering20197(13): 11564-11570.
[11]
QIN M REN W JIANG R, et al. Highly crystallized prussian blue with enhanced kinetics for highly efficient sodium storage [J].Acs Applied Materials & Interfaces202113(3): 3999-4007.
[12]
PATRA J HUANG H T XUE W J, et al. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon [J]. Energy Storage Materials201916: 146-154.
[13]
BAI P X HAN X P HE Y W, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J]. Energy Storage Materials202025: 324-333.
[14]
WANG J WANG H ZHAO R, et al. Mechanistic insight into ultrafast kinetics of sodium cointercalation in few-layer graphitic carbon [J]. Nano Letters202222(15): 6359-6365.
[15]
LANDESFEIND J HOSAKA T GRAF M, et al. Comparison of ionic transport properties of non-aqueous lithium and sodium hexafluorophosphate electrolytes [J]. Journal of the Electrochemical Society2021168(4): 040538.
[16]
ZHANG W LIU Y GUO Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering [J]. Science Advances20195(5): eaav7412.
[17]
MATSUDA Y NAKASHIMA H MORITA M, et al. Behavior of some ions in mixed organic electrolytes of high energy density batteries [J]. Journal of the Electrochemical Society1981128(12): 2552.
[18]
OKOSHI M YAMADA Y KOMABA S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions [J]. Journal of the Electrochemical Society2017164(2): A54.
[19]
SHAKOURIAN-FARD M KAMATH G SMITH K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: Insights from first-principles calculations [J]. The Journal of Physical Chemistry C2015119(40): 22747-22759.
[20]
PHAM T A KWEON K E SAMANTA A, et al. Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations [J]. The Journal of Physical Chemistry C2017121(40): 21913-21920.
[21]
KUMAR H DETSI E ABRAHAM D P, et al. Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries [J]. Chemistry of Materials201628(24): 8930-8941.
[22]
ORTIZ V N RUIZ DE L I SACCI R L, et al. Goldilocks and the three glymes: how Na+ solvation controls Na-O2 battery cycling [J]. Energy Storage Materials202029: 235-245.
[23]
LIU Y ZHU Y CUI Y. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy20194(7): 540-550.
[24]
HUANG Z HOU Y WANG T, et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery [J]. Nature Communications202112(1): 3106.
[25]
MOGENSEN R BRANDELL D YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries [J]. Acs Energy Letters20161(6): 1173-1178.
[26]
ASLAM M K NIU Y B HUSSAIN T, et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression [J]. Nano Energy202186: 106142.
[27]
NYMAN A ZAVALIS T G ELGER R, et al. Analysis of the polarization in a Li-ion battery cell by numerical simulations [J]. Journal of the Electrochemical Society2010157(11): A1236-A1246.
[28]
LEI S ZENG Z CHENG S, et al. Fast-charging of lithium-ion batteries: a review of electrolyte design aspects [J]. Battery Energy20232(5): 20230018.
[29]
QIN M ZENG Z CHENG S, et al. Challenges and strategies of formulating low-temperature electrolytes in lithium-ion batteries [J]. Interdisciplinary Materials20232(2): 308-336.
[30]
CAI W YAO Y X ZHU G L, et al. A review on energy chemistry of fast-charging anodes [J]. Chemical Society Reviews202049(12): 3806-3833.
[31]
XU K. “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+  in nonaqueous electrolytes [J]. Journal of the Electrochemical Society2007154(3): A162.
[32]
ZHOU X CHEN X YANG Z, et al. Anion receptor weakens ClO 4 - solvation for high-temperature sodium-ion batteries [J]. Advanced Functional Materials202434(5): 2302281.
[33]
DENG L, GOH K, YU F-D, et al. Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO42F3 cathode [J]. Energy Storage Materials202244: 82-92.
[34]
LI J HUANG S YU P, et al. Unraveling the underlying mechanism of good electrochemical performance of hard carbon in PC/EC-based electrolyte [J]. Journal of Colloid and Interface Science2024657: 653-663.
[35]
LIU T HAN X ZHANG Z, et al. A high concentration electrolyte enables superior cycle ability and rate capability for high voltage dual graphite battery [J]. Journal of Power Sources2019437: 226942.
[36]
SUO L HU Y S LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries [J]. Nature Communications20134(1): 1481.
[37]
CAO X REN X ZOU L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J]. Nature Energy20194(9): 796-805.
[38]
CHEN S ZHENG J YU L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes [J]. Joule20182(8): 1548-1558.
[39]
OULD D M C MENKIN S O'KEEFE C A, et al. New route to battery grade NaPF6 for Na-ion batteries: expanding the accessible concentration [J]. Angewandte Chemie-International Edition202160(47): 24882-24887.
[40]
PAN K H LU H Y ZHONG F P, et al. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries [J]. Acs Applied Materials & Interfaces201810(46): 39651-39660.
[41]
BHIDE A HOFMANN J KATHARINA D A, et al. Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 [J]. Physical Chemistry Chemical Physics201416(5): 1987-1998.
[42]
WU H Z YE Z C ZHU J L, et al. High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte [J]. ACS Applied Materials & Interfaces202214(44): 49774-49784.
[43]
LEE J LEE Y LEE J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries [J]. Acs Applied Materials & Interfaces20179(4): 3723-3732.
[44]
WANG Y JIANG R LIU Y, et al. Enhanced sodium metal/electrolyte interface by a localized high-concentration electrolyte for sodium metal batteries: first-principles calculations and experimental studies [J]. Acs Applied Energy Materials20214(7): 7376-7384.
[45]
QIN M LIU M ZENG Z, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries [J]. Advanced Energy Materials202212(48): 2201801.
[46]
QIN M ZENG Z LIU X, et al. Revealing surfactant effect of trifluoromethylbenzene in medium-concentrated PC electrolyte for advanced lithium-ion batteries [J]. Advanced Science202310(12): 2206648.
[47]
LI C XU H NI L, et al. Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives [J]. Advanced Energy Materials202313(40): 2301758.
[48]
KAMATH G CUTLER R W DESHMUKH S A, et al. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications [J]. The Journal of Physical Chemistry C2014118(25): 13406-13416.
[49]
KANKANAMGE S R G LI K FULFER K D, et al. Mechanism behind the unusually high conductivities of high concentrated sodium ion glyme-based electrolytes [J]. Journal of Physical Chemistry C2018122(44): 25237-25246.
[50]
CHEN J HUANG Z WANG C, et al. Sodium-difluoro(oxalato)borate (nadfob): a new electrolyte salt for Na-ion batteries [J]. Chemical Communications201551(48): 9809-9812.
[51]
LIANG H J GU Z Y ZHAO X X, et al. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries [J]. Angewandte Chemie International Edition202160(51): 26837-26846.
[52]
DENG Y FENG S DENG Z, et al. Rationalizing Na-ion solvation structure by weakening carbonate solvent coordination ability for high-voltage sodium metal batteries [J]. Journal of Energy Chemistry202387: 105-113.
[53]
YIN L WANG M XIE C, et al. High-voltage cyclic ether-based electrolytes for low-temperature sodium-ion batteries [J]. Acs Applied Materials & Interfaces202315(7): 9517-9523.
[54]
NAGMANI, KUMAR A PURAVANKARA S. Optimizing ultramicroporous hard carbon spheres in carbonate ester-based electrolytes for enhanced sodium storage in half-/full-cell sodium-ion batteries [J]. Battery Energy20221(3): 20220007.
[55]
PONROUCH A DEDRYVÈRE R MONTI D, et al. Towards high energy density sodium ion batteries through electrolyte optimization [J]. Energy & Environmental Science20136(8): 2361-2369.
[56]
DESAI P ABOU-RJEILY J J-M TARASCON, et al. Practicality of methyl acetate as a co-solvent for fast charging Na-ion battery electrolytes [J].Electrochimica Acta2022416: 140217.
[57]
HE M ZHU L YE G, et al. Tuning the electrolyte and interphasial chemistry for all-climate sodium-ion batteries [J]. Angewandte Chemie International Edition202463(21): e202401051.
[58]
ZHENG X GU Z FU J, et al. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries [J]. Energy & Environmental Science202114(9): 4936-4947.
[59]
ZHENG Y SOTO F A PONCE V, et al. Localized high concentration electrolyte behavior near a lithium-metal anode surface [J]. Journal of Materials Chemistry A20197(43): 25047-25055.
[60]
ZHANG H ZENG Z MA F, et al. Juggling formation of HF and LiF to reduce crossover effects in carbonate electrolyte with fluorinated cosolvents for high-voltage lithium metal batteries [J]. Advanced Functional Materials202333(4): 2212000.
[61]
ESHETU G G DIEMANT T HEKMATFAR M, et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries [J]. Nano Energy201955: 327-340.
[62]
HOU X LI T QIU Y, et al. Weak coulomb interaction between anions and Na+ during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries [J]. Chemical Engineering Journal2023453: 139932.
[63]
GAO L CHEN J LIU Y, et al. Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries [J]. Journal of Materials Chemistry:A20186(25): 12012-12017.
[64]
WAN S SONG K CHEN J, et al. Reductive competition effect-derived solid electrolyte interphase with evenly scattered inorganics enabling ultrahigh rate and long-life SPAN sodium metal batteries [J]. Journal of the American Chemical Society2023145(39): 21661-21671.
[65]
ZHU Z Q CHENG F Y HU Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries [J]. Journal of Power Sources2015293: 626-634.
[66]
COHN A P SHARE K CARTER R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene [J]. Nano Letters201616(1): 543-548.
[67]
XU Z L YOON G PARK K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries [J]. Nature Communications201910(1): 2598.
[68]
MOYER K DONOHUE J RAMANNA N, et al. High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes [J]. Nanoscale201810(28): 13335-13342.
[69]
KIM H HONG J YOON G, et al. Sodium intercalation chemistry in graphite [J]. Energy & Environmental Science20158(10): 2963-2969.
[70]
SEIDL L BUCHER N CHU E, et al. Intercalation of solvated Na-ions into graphite [J]. Energy & Environmental Science201710(7): 1631-1642.
[71]
KIM H HONG J Y-U PARK, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems [J]. Advanced Functional Materials201525(4): 534-541.
[72]
LI Y YUAN Y BAI Y, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes [J]. Advanced Energy Materials20188(18): 1702781.
[73]
YIN X WANG Z LIU Y, et al. Insight into the influence of ether and ester electrolytes on the sodium-ion transportation kinetics for hard carbon [J]. Nano Research202316(8): 10922-10930.
[74]
ZHU YE YANG L ZHOU X, et al. Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries [J]. Journal of Materials Chemistry A20175(20): 9528-9532.
[75]
YAN L ZHANG G WANG J, et al. Revisiting electrolyte kinetics differences in sodium ion battery: are esters really inferior to ethers? [J]. Energy & Environmental Materials20236(4): e12523.
[76]
ZHANG J WANG DW LV W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase [J]. Energy & Environmental Science201710(1): 370-376.
[77]
LIU Y YAO Z VANAPHUTI P, et al. Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material [J]. Cell Reports Physical Science20234(2): 101240.
[78]
YANG R SUN L LIU W, et al. Bio-derived 3D TiO2 hollow spheres with a mesocrystal nanostructure to achieve improved electrochemical performance of Na-ion batteries in ether-based electrolytes [J]. Journal of Materials Chemistry:A20197(7): 3399-3407.
[79]
SCHAFZAHL L HANZU I WILKENING M, et al. An electrolyte for reversible cycling of sodium metal and intercalation compounds [J]. ChemSusChem201710(2): 401-408.
[80]
ZHOU L CAO Z ZHANG J, et al. Engineering sodium-ion solvation structure to stabilize sodium anodes: universal strategy for fast-charging and safer sodium-ion batteries [J]. Nano Letters202020(5): 3247-3254.
[81]
CHENG F CAO M LI Q, et al. Electrolyte salts for sodium-ion batteries: NaPF6 or NaClO4? [J]. ACS Nano202317(18): 18608-18615.
[82]
CAO R MISHRA K LI X, et al. Enabling room temperature sodium metal batteries [J]. Nano Energy201630: 825-830.
[83]
CHEN S ZHENG J MEI D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes [J]. Advanced Materials201830(21): 1706102.
[84]
ZHOU X ZHANG Q ZHU Z, et al. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries [J]. Angewandte Chemie International Edition202261(30): e202205045.
[85]
ZHANG J LI Q ZENG Y, et al. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries [J]. Acs Energy Letters20238(4): 1752-1761.
[86]
TANG Z WANG H WU P-F, et al. Electrode–electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries [J]. Angewandte Chemie International Edition202261(18): e202200475.
[87]
ZHOU J WANG Y WANG J, et al. Low-temperature and high-rate sodium metal batteries enabled by electrolyte chemistry [J]. Energy Storage Materials202250: 47-54.
[88]
LI Y YANG Y LU Y, et al. Ultralow-concentration electrolyte for Na-ion batteries [J]. Acs Energy Letters20205(4): 1156-1158.
[89]
DENG L YU F-D SUN G, et al. Constructing stable anion-tuned electrode/electrolyte interphase on high-voltage Na3V2(PO42F3 cathode for thermally-modulated fast-charging batteries [J]. Angewandte Chemie International Edition202261(48): e202213416.

Comments

PDF(2592 KB)

Accesses

Citation

Detail

Sections
Recommended

/