Synthesis and electrochemical performance of lithium sulfonimide solid polymer electrolyte

Jinlan LIANG, Daohuan WU, Haifeng ZOU, Zhuo CHEN, Jinliang ZHUANG, Hu CHENG

PDF(2565 KB)
PDF(2565 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 174-181. DOI: 10.11868/j.issn.1001-4381.2024.000166
RESEARCH ARTICLE

Synthesis and electrochemical performance of lithium sulfonimide solid polymer electrolyte

Author information +
History +

Abstract

Fluorinated and cyanosubstituted lithium sulfonimide (LiFBTFSI and LiCBTFSI) are synthesized from 4-fluorobenzene sulfonyl chloride and 4-cyanobenzene sulfonyl chloride by sulfonylation and ion exchange, respectively. Two PEO based polymer electrolytes (PEO20-LiFBTFSI and PEO20-LiCBTFSI) are prepared by solution casting, and their micromorphology, thermal stability and electrochemical properties are characterized. The results show that at 60 ℃ and EO/Li+=20, the ionic conductivity of the two solid electrolyte reaches 10-4 S/cm, the electrochemical stability window is greater than 5 V, and the battery assembled with lithium iron phosphate has a high initial discharge capacity (0.1 C, ≈150 mAh·g-1). Compared with the fluorine PEO20-LiFBTFSI solid electrolyte, the cyan-containing PEO20-LiCBTFSI solid electrolyte has better electrochemical stability and interface compatibility. After 50 cycles, the specific discharge capacity of the battery is 137.4 mAh·g-1, and the capacity retention rate is 93.0%. In addition, the cyano-containing PEO20-LiCBTFSI solid electrolyte has good electrochemical stability with lithium metal, and the assembled lithium symmetric battery operates stably at a current density of 0.1 mA/cm2 for 500 h without short circuit.

Key words

lithium-ion battery / polymer electrolyte / lithium salt / polyoxyethylene

Cite this article

Download Citations
Jinlan LIANG , Daohuan WU , Haifeng ZOU , et al . Synthesis and electrochemical performance of lithium sulfonimide solid polymer electrolyte. Journal of Materials Engineering. 2025, 53(7): 174-181 https://doi.org/10.11868/j.issn.1001-4381.2024.000166

References

[1]
ZHAO R WU Y LIANG Z, et al. Metal-organic frameworks for solid-state electrolytes[J]. Energy & Environmental Science202013(8): 2386-2403.
[2]
LI D WANG J GUO S, et al. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery[J]. Advanced Functional Materials202030(50): 2070329.
[3]
LI Z FU J L ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science202310(10): 2201718.
[4]
DENG K R ZENG Q G WANG D, et al. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. Journal of Materials Chemistry A20208(4): 1557-1577.
[5]
曹倩, 杨晶晶, 陈卫星, 等. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程202250(10): 148-156.
CAO Q YANG J J CHEN W X, et al. Preparation and properties of solid polymer electrolyte membranes based on PEO by electrospinning[J]. Journal of Materials Engineering202250(10): 148-156.
[6]
陈欣欣, 邹海凤, 陈卓, 等. 单离子导电聚合物电解质膜的制备及电化学性能研究[J]. 功能材料202253(8): 8165-8169.
CHEN X X ZOU H F CHEN Z, et al. Synthesis and electrochemical performance of lithium single-ion conductive polymer electrolyte membrances[J]. Journal of Functional Materials202253(8): 8165-8169.
[7]
LADOUCEUR S PAILLET S VIJH A, et al. Synthesis and characterization of a new family of aryl-trifluoromethanesulfonylimide Li-salts for Li-ion batteries and beyond[J]. Journal of Power Sources2015293: 78-88.
[8]
XIA S X WU X S ZHANG Z C, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem20195(4): 753-785.
[9]
CAO C LI Y CHEN S S, et al. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces201911(39): 35683-35692.
[10]
王子阳, 付茹, 邹海凤, 等. 锂单离子导电聚合物电解质的制备及界面稳定性[J]. 精细化工202441(2): 358-363.
WANG Z Y FU R ZOU H F, et al. Preparation and interfacial stability of single lithium-ion conductive polymer electrolytes[J]. Fine Chemicals202441(2): 358-363.
[11]
ARMAND M TARASCON J M. Building better batteries[J]. Nature2008451: 652-657.
[12]
DING P P LIN Z Y GUO X W, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Materials Today202151: 449-474.
[13]
FENTON D E PARKER J M WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide) [J]. Polymer197314(11): 589.
[14]
ARMAND M. Polymer solid electrolytes―an overview[J]. Solid State Ionics19839/10: 745-754.
[15]
XIAO Z ZHOU B WANG J, et al. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries[J]. Journal of Membrane Science2019576: 182-189.
[16]
ZHANG X WANG S XUE C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials201931(11): 1806082.
[17]
LV F WANG Z SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources2019441: 227175.
[18]
CHEN H W LIN T P CHANG F C. Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay[J]. Polymer200243(19): 5281-5288.
[19]
PORCARELLI L ABOUDZADEH M A RUBATAT L, et al. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries[J]. Journal of Power Sources2017364: 191-199.
[20]
HUO H WU B ZHANG T, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries[J]. Energy Storage Materials201918: 59-67.
[21]
MEZIANE R BONNET J P COURTY M, et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries[J]. Electrochimica Acta201157: 14-19.
[22]
MA Q ZHANG H ZHOU C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition201655(7): 2521-2525.
[23]
MA Q XIA Y FENG W F, et al. Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes[J]. RSC Advances20166(39): 32454-32461.
[24]
MORIZUR V OLIVERO S DESMURS J R, et al. Novel lithium and sodium salts of sulfonamides and bis(sulfonyl)imides: synthesis and electrical conductivity[J]. New Journal of Chemistry201438(12): 6193-6197.
[25]
YUAN H Y LUAN J Y YANG Z L, et al. Single lithium-ion conducting solid polymer electrolyte with superior electrochemical stability and interfacial compatibility for solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces202012(6): 7249-7256.
[26]
MENGISTIE T S KO J M KIM J Y. Enhanced single-ion conduction and free-standing properties of solid polymer electrolyte by incorporating a polyelectrolyte[J]. Materials Research Express20218(3): 035308.
[27]
LEE Y G, RYU S, SUGIMOTO T. Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection[J]. Chemistry of Materials201729: 5906-5914.
[28]
LIANG X PANG Q KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy20172(9): 17119.
[29]
HARRY K J HALLINAN D T PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials201413(1): 69-73.

Comments

PDF(2565 KB)

Accesses

Citation

Detail

Sections
Recommended

/