Research progress in ultra-high temperature thermal resistance coatings

Dongrui LIU, Xing TANG, Jie XIAO, Qian GUO, Wenting HE, Hongbo GUO

PDF(3260 KB)
PDF(3260 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (1) : 1-14. DOI: 10.11868/j.issn.1001-4381.2024.000122
REVIEW

Research progress in ultra-high temperature thermal resistance coatings

Author information +
History +

Abstract

As the turbine inlet temperature in aero-engines continues to rise, conventional thermal barrier coatings (TBCs) are becoming increasingly ineffective at blocking thermal radiation in the near-infrared wavelength range generated by high-temperature gases. The heat transfer of heat radiation can penetrate through the coating and directly heat the underlying metal substrate, thereby compromising the service life of hot-end components. In this paper, the authors’ experimental results are used to review recent developments in the design of novel TBCs materials and structures that combine thermal insulation with enhanced radiation suppression capabilities. A comparative analysis of the near-infrared optical properties of conventional TBCs is presented. The current methods aimed at improving the ability of coatings to mitigate radiative heat transfer are discussed. Particular attention is given to the issue of conventional YSZ-based inability of TBCs to effectively block infrared radiation in the shortwave infrared region. An analysis is conducted on the two fundamental approaches for reducing the infrared transmittance of TBCs, namely, improving the infrared reflectance or infrared absorptance of coatings. Additionally, a systematic summary of the strategies for tuning the infrared reflectance and absorptance of coatings, including influencing factors, underlying mechanisms, advantages, and limitations, is provided. Finally, future trends and breakthrough directions in the development of novel radiation-suppressing coatings, particularly in terms of material and structural design as well as the use of high-performance computational tools, are highlighted.

Key words

thermal barrier coating / thermal resistance coating / radiation suppression / infrared absorption / infrared reflectance

Cite this article

Download Citations
Dongrui LIU , Xing TANG , Jie XIAO , et al . Research progress in ultra-high temperature thermal resistance coatings. Journal of Materials Engineering. 2025, 53(1): 1-14 https://doi.org/10.11868/j.issn.1001-4381.2024.000122

References

[1]
FLAMANT Q CLARKE D R. Opportunities for minimizing radiative heat transfer in future thermal and environmental barrier coatings[J]. Scripta Materialia2019173: 26-31.
[2]
SIEGEL R SPUCKLER C M. Analysis of thermal radiation effects on temperatures in turbine engine thermal barrier coatings[J]. Materials Science and Engineering: A1998245(2): 150-159.
[3]
ELDRIDGE J I SPUCKLER C M. Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Journal of the American Ceramic Society200891(5): 1603-1611.
[4]
MANARA J ZIPF M STARK T, et al. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines[J]. Infrared Physics & Technology201780: 120-130.
[5]
YANG G ZHAO C Y. A comparative experimental study on radiative properties of EB-PVD and air plasma sprayed thermal barrier coatings[J]. Journal of Heat Transfer2015137(9): 091024.
[6]
ELDRIDGE J I SPUCKLER C M MARKHAM J R. Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures[J]. Journal of the American Ceramic Society200992(10): 2276-2285.
[7]
MAKINO T KUNITOMO T SAKAI I, et al. Thermal radiation properties of ceramic materials[J]. Heat Transfer-Japanese Research198413: 33-50.
[8]
KOKHANOVSKY A A. Physical interpretation and accuracy of the Kubelka-Munk theory[J]. Journal of Physics D: Applied Physics200740(7): 2210.
[9]
YANG L MIKLAVCIC S J. Revised Kubelka-Munk theory Ⅲ: a general theory of light propagation in scattering and absorptive media[J]. Journal of the Optical Society of America A200522(9): 1866-1873.
[10]
ZHANG T DONG W WANG Z Y, et al. Investigation of infrared spectral emissivity of low emittance functional coating artefacts[J]. Infrared Physics & Technology2020110: 103454.
[11]
YANG G ZHAO C Y WANG B X. Experimental study on radiative properties of air plasma sprayed thermal barrier coatings[J]. International Journal of Heat and Mass Transfer201366: 695-698.
[12]
WANG L ZHANG P HABIBI M H, et al. Thermochemical compatibility and optical properties of Gd2Zr2O7 and YSZ for thermal barrier coatings[C]∥ASME. ASME 2012 International Mechanical Engineering Congress and Exposition. Houston, Texas, USA: ASME, 2012: 889-893.
[13]
WANG L ZHANG P HABIBI M H, et al. Infrared radiative properties of plasma-sprayed strontium zirconate[J]. Materials Letters2014137: 5-8.
[14]
WANG L HABIBI M H ELDRIDGE J I, et al. Infrared radiative properties of plasma-sprayed BaZrO3 coatings[J]. Journal of the European Ceramic Society201434(15): 3941-3949.
[15]
PAPATZACOS P AKRAM M N BARDALEN E, et al. Simulated effects of wet-etched induced surface roughness on IR transmission and reflection[C]∥IEEE. 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). Tønsberg, Norway: IEEE, 2020: 1-4.
[16]
WOLFE D E SINGH J MILLER R A, et al. Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications[J]. Surface and Coatings Technology2005190(1): 132-149.
[17]
KELLY M J WOLFE D E SINGH J, et al. Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications[J]. International Journal of Applied Ceramic Technology20063(2): 81-93.
[18]
YANG J WAN C ZHAO M, et al. Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications[J]. Journal of the European Ceramic Society201636(15): 3809-3814.
[19]
HEIROTH S GHISLENI R LIPPERT T, et al. Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition[J]. Acta Materialia201159(6): 2330-2340.
[20]
HUANG M LIANG J ZHANG P, et al. Opaque Gd2Zr2O7/GdMnO3 thermal barrier materials for thermal radiation shielding: the effect of polaron excitation[J]. Journal of Materials Science & Technology2022100: 67-74.
[21]
GUPTA S K ABDOU M ZUNIGA J P, et al. Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles[J]. Journal of Luminescence2019209: 302-315.
[22]
SUKHORUKOV Y TELEGIN A BEBENIN N, et al. Strain-magnetooptics in single crystals of CoFe2O4 [J]. Magnetochemistry20228(10): 135.
[23]
HOSSEINI S M. Structural, electronic and optical properties of spinel MgAl2O4 oxide[J]. Physica Status Solidi B2008245(12): 2800-2807.
[24]
SINGH J K MANDAL S K BANERJEE G. Refractive index of different perovskite materials[J]. Journal of Materials Research202136(9): 1773-1793.
[25]
STUKE A KASSNER H MARQUÉS J L, et al. Suspension and air plasma-sprayed ceramic thermal barrier coatings with high infrared reflectance[J]. International Journal of Applied Ceramic Technology20129(3): 561-574.
[26]
SHANG G DYACHENKO P LEIB E W, et al. Conductive and radiative heat transfer inhibition in YSZ photonic glass[J]. Ceramics International202046(11): 19241-19247.
[27]
MANARA J ARDUINI-SCHUSTER M RATZER-SCHEIBE H J, et al. Infrared-optical properties and heat transfer coefficients of semitransparent thermal barrier coatings[J]. Surface and Coatings Technology2009203(8): 1059-1068.
[28]
WANG Y HSU P F. The correlation of the scattering coefficient and morphology-based microstructure in yttria-stabilized zirconia coatings[J]. Journal of the American Ceramic Society2023106(3): 2083-2094.
[29]
KIM H J KIM D S, MUN H, et al. Nanosheet coated dual-shell TiO2 sphere with high solar reflectance for thermal-shield materials[J]. Composites Communications202022: 100432.
[30]
YU Y ZHANG X GUO F, et al. Enhanced near infrared reflectivity in hierarchical porous La2Zr2O7 microspheres produced by electro-spraying assisted phase inversion method[J]. Optical Materials2021118: 111270.
[31]
TAO Y MAO Z YANG Z, et al. Preparation and characterization of polymer matrix passive cooling materials with thermal insulation and solar reflection properties based on porous structure[J]. Energy and Buildings2020225: 110361.
[32]
SHI H ZHAO C Y WANG B X. Modeling the thermal radiation properties of thermal barrier coatings based on a random generation algorithm[J]. Ceramics International201642(8): 9752-9761.
[33]
ZHANG B J WANG B X ZHAO C Y. Microstructural effect on the radiative properties of YSZ thermal barrier coatings (TBCs)[J]. International Journal of Heat and Mass Transfer201473: 59-66.
[34]
WANG M WANG J PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E200775(3): 036702.
[35]
FANG X ZHAO C Y BAO H. Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2014133: 579-588.
[36]
ZHANG B J ZHAO C Y. Geometric optics approximation with considering interference for reflection from random rough surface[J]. Journal of Thermophysics and Heat Transfer201327(3): 458-464.
[37]
HUANG J FAN C SONG G, et al. Enhanced infrared emissivity of CeO2 coatings by La doping[J]. Applied Surface Science2013280: 605-609.
[38]
LIU F CHENG X MAO J, et al. Fabrication and characterization of Pr6O11-HfO2 ultra-high temperature infrared radiation coating[J]. Journal of the European Ceramic Society201939(14): 4208-4215.
[39]
WU X YU H DONG H, et al. Enhanced infrared radiation properties of CoFe2O4 by single Ce3+-doping with energy-efficient preparation[J]. Ceramics International201440(4): 5905-5911.
[40]
XU J LIU Y MA Z, et al. Infrared radiative performance and anti-ablation behavior of Sm2O3 modified ZrB2/SiC coatings[J]. Ceramics International202147(1): 400-408.
[41]
孙汉东,樊震,常大定.提高高温红外辐射涂层发射率的途径[J].红外技术199012(3):31-34.
SUN H D FAN Z CHANG D D. A way to increase the emissivity of high temperature infrared radiation coating[J]. Infrared Technology199012(3): 31-34.
[42]
MA Y H LIU Z G OUYANG J H, et al. Influence of TiO2 doping on thermo-optical properties of pyrochlore Sm2(Zr1- x Ti x2O7(0≤x≤0.15) ceramics[J]. Ceramics International201642(13): 14749-14753.
[43]
WANG D DONG S ZENG J, et al. Influence of doping Mg2+ or Ti4+ captions on the microstructures, thermal radiation and thermal cycling behavior of plasma-sprayed Gd2Zr2O7 coatings[J]. Ceramics International202046(9): 13054-13065.
[44]
DONG S ZHANG F LI N, et al. Thermal radiation and cycling properties of (Ca, Fe) or (Sr, Mn) co-doped La2Ce2O7 coatings[J]. Journal of the European Ceramic Society202040(5): 2020-2029.
[45]
DING S MAO J ZENG X, et al. Enhanced infrared emission property of NiCr spinel coating doped with MnO2 and rare-earth oxides[J]. Surface and Coatings Technology2018344: 418-422.
[46]
ZHANG Y WEN D. Effect of RE/Ni (RE=Sm, Gd, Eu) addition on the infrared emission properties of Co-Zn ferrites with high emissivity[J]. Materials Science and Engineering: B2010172(3): 331-335.
[47]
MUNDY W C ROUX J A SMITH A M. Mie scattering by spheres in an absorbing medium[J]. Journal of the Optical Society of America197464(12): 1593-1597.
[48]
LI T MA Z LIU L, et al. Thermal properties of Sm2Zr2O7-NiCr2O4 composites[J]. Ceramics International201440(7): 11423-11426.
[49]
裴训,谢敏,李瑞,等.La2(Ce0.3Zr0.72O7-NiCr2O4材料高温红外发射率研究[J].内蒙古科技大学学报202342(3):248-252.
PEI X XIE M LI R, et al. Study on high temperature infrared emissivity of La2(Ce0.3Zr0.72O7-NiCr2O4 [J]. Journal of Inner Mongolia University of Science and Technology202342(3): 248-252.
[50]
ZHANG J FAN X A LU L, et al. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle[J]. Applied Surface Science2015344: 223-229.
[51]
LIU H Z OUYANG J H LIU Z G, et al. Microstructure, thermal shock resistance and thermal emissivity of plasma sprayed LaMAl11O19M=Mg, Fe) coatings for metallic thermal protection systems[J]. Applied Surface Science2013271: 52-59.
[52]
QIU S XIANG H DAI F Z, et al. Medium-entropy (Me, Ti)0.1 (Zr, Hf, Ce)0.9O2 (Me=Y and Ta): promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking[J]. Journal of Materials Science & Technology2022123: 144-153.
[53]
王士峰,夏明岗,刘明,等.NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟[J].航空材料学报202343(1):70-79.
WANG S F XIA M G LIU M, et al. Finite element simulation of thermodynamic properties of NiCoCrAlY/YSZ gradient coating[J]. Journal of Aeronautical Materials202343(1): 70-79.
[54]
张聪,刘杰,解树一,等.高通量计算与机器学习驱动高熵合金的研究进展[J].材料工程202351(3):1-16.
ZHANG C LIU J XIE S Y, et al. Research progress in high-entropy alloys driven by high throughput computation and machine learning[J]. Journal of Materials Engineering202351(3): 1-16.
[55]
岳溪朝,冯燕,刘健,等.材料基因组工程专用数据库[J].上海大学学报(自然科学版)202228(3):399-412.
YUE X C FENG Y LIU J, et al. Materials genome engineering database[J]. Journal of Shanghai University(Natural Science Edition)202228(3): 399-412.
[56]
胡勋锋,李登峰.广义多选择合作博弈的Shapley值[J].系统工程理论与实践202444(8):2524-2531.
HU X F LI D F. A Shapley value for multi-choice cooperative games revisited[J]. Systems Engineering—Theory & Practice202444(8): 2524-2531.
[57]
靳庆文,李胡蓉,张晨.LIME算法的演进及其在数据故事化中的应用[J/OL].数据分析与知识发现2024[2024-02-19].
JIN Q W LI H R ZHANG C. The evolution of LIME algorithm and its application in data storying[J/OL]. Data Analysis and Knowledge Discovery2024[2024-02-19].

Comments

PDF(3260 KB)

Accesses

Citation

Detail

Sections
Recommended

/