Research progress in high-temperature infrared stealth materials

Jincheng GUO, Sue REN, Yanfei CHEN

PDF(1156 KB)
PDF(1156 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (1) : 45-54. DOI: 10.11868/j.issn.1001-4381.2024.000119
REVIEW

Research progress in high-temperature infrared stealth materials

Author information +
History +

Abstract

Infrared radiation at the hot-section of the aero engine is easily detected by infrared detectors, which is not conducive to aircraft service in a complex monitoring environment. How to reduce the infrared radiation characteristics of high-temperature parts of aero engine and improve the high-temperature infrared stealth performance of the aero engine is a difficult problem that needs to be solved. This paper discusses the infrared stealth mechanisms and research status of metal-based, inorganic non-metallic, and structural infrared stealth materials with potential applications in high-temperature environments. It also highlights the future development trends for high-temperature infrared stealth materials, including the need for further investigation into the failure mechanisms of these materials, the integration of temperature control methods to meet higher-temperature stealth requirements, and the necessity to develop comprehensive stealth performance to ensure the capability of aircraft to remain stealthy in complex environments.

Key words

infrared stealth / high temperature / low infrared emissivity / infrared detection

Cite this article

Download Citations
Jincheng GUO , Sue REN , Yanfei CHEN. Research progress in high-temperature infrared stealth materials. Journal of Materials Engineering. 2025, 53(1): 45-54 https://doi.org/10.11868/j.issn.1001-4381.2024.000119

References

[1]
MAHULIKAR S P SONAWANE H R RAO V G. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences200743(7): 218-245.
[2]
KOU W YANG L. Error analysis of temperature measurement using infrared thermography for naval ship[J]. Energy Conversion Application20012:1301.
[3]
HAULMAN D L. USAF manned aircraft combat losses 1990-2002[R]. USA:Air Force Historical Research Agency, 2002.
[4]
刘鹏,殷举航,罗雄光,等. 高温红外隐身涂层材料研究进展[J]. 材料研究与应用202216(1):57-67.
LIU P YIN J H LUO X G, et al. Research progress of high temperature infrared stealth coating materials[J]. Materials Research and Application202216(1):57-67.
[5]
FANG K FANG F. Au-decorated SWNT/PVDF electrospun films with enhanced infrared stealth performance[J]. Materials Letters2018230: 279-282.
[6]
徐顶国,桑建华,罗明东. 无人机蒙皮红外辐射特征研究[J]. 红外与激光工程201342(4):880-884.
XU D G SANG J H LUO M D. Study on the infrared radiation characteristics of UAVS’ skin[J]. Infrared and Laser Engineering201342(4):880-884.
[7]
吴剑锋,何广军,赵玉芹. 飞机尾向的红外辐射特性计算[J]. 空军工程大学学报(自然科学版)20067(6): 26-28.
WU J F HE G J ZHAO Y Q. The calculation for strength of infrared radiation in the opposite direction of the airplane[J]. Journal of Air Force and Engineering University(Nature Science Edition)20067(6): 26-28.
[8]
SILVEIRA F E M KURCBART S M. Hagen-Rubens relation beyond far-infrared region[J]. Europhysics Letters201090(4): 44004.
[9]
刁训刚,郝维昌,王天民,等. 低发射率薄膜的红外隐身特性研究[J]. 宇航材料工艺200737(5):39-42.
DIAO X G HAO W C WANG T M, et al. Infrared stealth properties of low emissivity thin films[J]. Aerospace Material & Technology200737(5): 39-42.
[10]
LV X M GOU X L WANG H C, et al. Preparation, characterization of low infrared emissivity stealth coating[J]. Advanced Materials Research2013634/638:2502-2505.
[11]
TAN W M WANG L F YU F, et al. Preparation and characterization of a greenish yellow lackluster coating with low infrared emissivity based on Prussian blue modified aluminum[J]. Progress in Organic Coatings201477(7): 1163-1168.
[12]
刘国圣. 水热合成CeO2基耐高温低发射率涂层的制备及性能研究[D]. 南京:南京航空航天大学,2020.
LIU G S. Preparation and properties of hydrothermally synthesized CeO2 based low emissivity coatings at high temperatures[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[13]
WANG L XU G Y LIU C Y, et al. Surface-modified CeO2 coating with excellent thermal shock resistance performance and low infrared emissivity at high-temperature[J]. Surface and Coatings Technology2019357: 559-566.
[14]
黄文质,刘海韬. 高温红外低发射率涂层研究现状[J]. 材料导报201832():385-389.
摘要
增刊1
HUANG W Z LIU H T. A research status of high-temperature infrared low emissivity coating[J]. Materials Reports201832():385-389.
Suppl 1
[15]
JI C WANG Y YE Z Q, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high performance thermal management materials[J]. ACS Applied Materials & Interfaces202012(21): 24298-24307.
[16]
CHU H T ZHANG Z C LIU Y, et al. Silver particles modified carbon nanotube paper/glassfiber reinforced polymer composite material for high temperature infrared stealth camouflage[J]. Carbon201698: 557-566.
[17]
叶圣天,成声月,刘朝辉,等. 8~14 μm波段水性红外隐身涂料研究[J]. 红外与激光工程201645(2):79-84.
YE S T CHENG S Y LIU Z H, et al.Water-based infrared stealth coating in 8-14 μm wavebands[J]. Infrared and Laser Engineering201645(2):79-84.
[18]
YU H J XU G Y SHEN X M, et al.Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings200966(2): 161-166.
[19]
WANG L LIU C Y XU G Y, et al. Influences of morphology and floating rate of CeO2 fillers on controlling infrared emissivity of the epoxy-silicone resin based coatings[J]. Materials Chemistry and Physics2019229: 380-386.
[20]
李俊生,程海峰,周永江,等. 耐高温、高结合强度的低红外发射率复合涂层及其制备方法:CN 103963380A[P]. 2014-08-06.
LI J S CHENG H F ZHOU Y J, et al. Low infrared emissivity composite coating with high temperature resistance and high bonding strength and preparation method: CN 103963380A[P]. 2014-08-06.
[21]
刘海韬,程海峰,田浩,等. 耐高温、高结合强度的低红外发射率复合涂层、带涂层的金属合金材料及其制备方法:CN 104818482B[P]. 2017-07-21.
LIU H T CHENG H F TIAN H, et al. Low infrared emissivity composite coatings with high temperature resistance and high bonding strength, metal alloy materials with coatings and preparation methods: CN 104818482B[P]. 2017-07-21.
[22]
黄文质,刘海韬. 一种耐高温雷达与红外兼容隐身涂层及其制备方法:CN 108212722A[P]. 2018-06-29.
HUANG W Z LIU H T. A high-temperature resistant radar and infrared compatible stealth coating and preparation method: CN 108212722A[P]. 2018-06-29.
[23]
张伟钢,徐国跃,薛连海. 聚氨酯/青铜-Sm2O3复合涂层的近红外吸收与发射率性能[J]. 材料工程201644(1): 115-119.
ZHANG W G XU G Y XUE L H. Near-infrared absorption and infrared emissivity properties of polyurethane/bronze-Sm2O3 composite coatings[J]. Journal of Materials Engineering201644 (1):115-119.
[24]
李靖宇,杜仕国,施冬梅,等. 红外隐身涂料粘合剂的研究进展[J]. 表面技术200938(4):72-73.
LI J Y DU S G SHI D M, et al. Development of the adhesive of infrared stealth coating[J]. Surface Technology200938(4): 72-73.
[25]
丁儒雅,徐国跃,张伟钢,等. 固化温度对低发射率涂层综合性能的影响[J]. 兵器材料科学与工程201235(6):4-7.
DING R Y XU G Y ZHANG W G, et al. Influence of curing temperature on comprehensive properties of low infrared emissivity coatings[J]. Ordnance Material Science and Engineering201235(6): 4-7.
[26]
李叶,张志毅,寿金泉,等. 低红外发射率涂层的制备及耐高温性能研究[J],中国胶粘剂201524(9):37-40.
LI Y ZHANG Z Y SHOU J Q, et al. Study on preparation and high temperature resistance of low infrared emissivity coating[J]. China Adhesives201524(9): 37-40.
[27]
HU C XU G Y SHEN X M, et al. The epoxy-siloxane/Al composite coatings with low infrared emissivity for high temperature applications[J]. Applied Surface Science2010256: 3459.
[28]
YU H J XU G Y SHEN X M, et al. Low infrared emissivity of polyurethane/Cu composite coatings[J]. Applied Surface Science2009255(12): 6077-6081.
[29]
HU C XU G Y SHEN X M. Preparation and characteristics of thermal resistance polysiloxane/Al composite coatings with low infrared emissivity[J]. Journal of Alloys and Compounds2009486(1): 371-375.
[30]
HUANG Z B ZHOU W C TANG X F, et al. Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy[J]. Applied Surface Science2010256(7): 2025-2030.
[31]
HUANG Z B ZHOU W C TANG X F, et al. Effects of substrate roughness on infrared emissivity characteristics of Au films deposited on Ni alloy[J].Thin Solid Films2011519(10): 3100-3106.
[32]
HUANG Z B ZHOU W C TANG X F, et al. High-temperature application of the low-emissivity Au/Ni films on alloys[J]. Applied Surface Science2010256(22): 6893-6898.
[33]
任菁. 低发射率硫化物半导体颜料的制备及机理研究[D]. 南京:南京航空航天大学,2007.
REN J. Preparation of semiconductor sulfide pigment with low-emissivity and the mechanism study[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[34]
WANG L LIU C Y XU G Y, et al. Influences of morphology and floating rate of CeO2 fillers on controlling infrared emissivity of the epoxy-silicone resin based coatings[J]. Materials Chemistry and Physics2019229: 380-386.
[35]
胡晨. 3~5 μm波段低发射率耐热型涂料研究[D]. 南京:南京航空航天大学,2010.
HU C. Research on thermal resistance coatings with low infrared emissivity in 3-5 μm[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
[36]
郭腾超,徐国跃,陈砚朋,等. 硅酸盐基耐高温涂层的制备及发射率研究[J].红外技术201032(12):696-700.
GUO T C XU G Y CHEN Y P, et al. Research on preparation and infrared emissivity property of silicate heat-resistant coatings[J]. Infrared Technology201032(12): 696-700.
[37]
ZHOU Q ZHU S Z MA Z, et al. Experimental and first-principles study on the effect of oxygen vacancy on infrared emissivity of CeO2 [J]. Ceramics International202248: 11313-11319.
[38]
ZHAO X R LIU C Y XU C, et al.The effects of Ca2+ and Y3+ ions co-doping on reducing infrared emissivity of ceria at high temperature[J].Infrared Physics & Technology201892: 454-458.
[39]
BU H H LIU C Y XU G Y, et al. The low infrared emissivity of Ce1- x Y x O2- x /2 samples at high-temperature contributed by enhanced conductivity[J]. MATEC Web of Conferences2018238: 03002.
[40]
蒋勇,徐国跃,郭腾超,等. 热处理对氧化铈粉体3~5 μm波段红外发射率的影响[J].红外技术201133(12):699-703.
JIANG Y XU G Y GUO T C, et al. Effects of heat treatment on the infrared emissivity of cerium oxide in 3-5 μm waveband[J]. Infrared Technology201133(12): 699-703.
[41]
ZHOU Q ZHU S Z MA Z, et al. Experimental and first-principles study on the effect of oxygen vacancy on infrared emissivity of CeO2 [J]. Ceramics International202248(8): 11313-11319.
[42]
REN K XIA J B WANG Y G. Grain growth kinetics of 3 mol% yttria-stabilized zirconia during flash sintering[J]. Journal of the European Ceramic Society201939 :1366-1373.
[43]
REN K LIU J L WANG Y G. Flash sintering of yttria-stabilized zirconia: fundamental understanding and applications[J]. Scripta Materialia2020187:371-378.
[44]
CAMPO L D De SOUSA M D WITTMANN-TÉNÈZE K, et al. Effect of porosity on the infrared radiative properties of plasma-sprayed yttria-stabilized zirconia ceramic thermal barrier coatings[J]. The Journal of Physical Chemistry C2014118(25): 13590-13597.
[45]
殷举航. 基于等离子喷涂技术的YSZ涂层沉积机理和性能研究[D].成都:电子科技大学,2023.
YIN J H. Study on deposition mechanism and performance of YSZ coating based on plasma spraying technology[D].Chengdu: University of Electronic Science and Technology of China, 2023.
[46]
王慧慧,徐国跃,张建超,等. 单项掺杂对8YSZ粉体3~5 μm波段发射率的影响[J]. 兵器材料科学与工程201538(2):23-27.
WANG H H XU G Y ZHANG J C, et al. Effect of single doped 8YSZ powder on its emissivity in 3-5 μm wavelengths[J]. Ordnance Material Science and Engineering201538(2): 23-27.
[47]
王自荣,余大斌. ITO涂料在8~14 μm波段红外发射率的研究[J]. 红外技术199921(1): 41-44.
WANG Z R YU D B. Infrared emittance of paints with ITO pigments in 8-14 μm waveband[J]. Infrared Technology199921(1): 41-44.
[48]
SUN K W ZHOU W C TANG X F, et al. Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature[J]. Infrared Physics &Technology201678: 156-161.
[49]
GUO T C XU G Y TAN S J, et al. Controllable synthesis of ZnO with different morphologies and their morphology-dependent infrared emissivity in high temperature conditions[J]. Journal of Alloys and Compounds2019804:503-510.
[50]
GUO T C XU G Y TAN S J, et al. Temperature-dependent infrared emissivity property of Ce-doped ZnO nanoparticles[J]. Ceramics International202046(2):1569-1576.
[51]
LI E B MA W ZHANG P, et al. The effect of Al3+ doping on the infrared radiation and thermophysical properties of SrZrO3 perovskites as potential low thermal infrared material[J]. Acta Materialia2021209: 116795.
[52]
SHEN X M XU G Y SHAO C M, et al. The effect of K+, Na+ doping on infrared emissivity of lanthanum manganites[J]. Solid State Communications2009149: 852-854.
[53]
刘嘉玮,王建江,许宝才,等. 钙钛矿型La1- x Ba x MnO3(0≤x≤0.5)的红外发射率和微波吸收性能[J]. 航空材料学报201737(5): 29-34.
LIU J W WANG J J XU B C, et al. Infrared emissivities and microwave absorption properties of perovskite La1- x Ba x MnO3(0≤x≤0.5)[J]. Journal of Aeronautical Materials201737(5): 29-34.
[54]
喻亮,茹红强,岳新艳,等. ZrB2电子结构和光学声学性质的第一性原理计算[J]. 东北大学学报(自然科学版)201132(2): 254-257.
YU L RU H Q YUE X Y, et al. First principle study on electronic structure and optical phonon properties of ZrB2 [J]. Journal of Northeastern University(Natural Science)201132(2):254-257.
[55]
LAWSON J W BAUSCHLICHER C W DAW M S, et al. Computations of electronic, mechanical, and thermal properties of ZrB2 and HfB2 [J]. Journal of the American Ceramic Society201194(10): 3494-3499.
[56]
WANG P QI Y S ZHOU S B, et al. Polycrystalline ZrB2 coating prepared on graphite by chemical vapor deposition[J]. Physica Status Solidi2016253(8): 1590-1595.
[57]
GI D S YONG S C DONG W L, et al. High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K[J]. Acta Materialia2016113: 32-40.
[58]
张敏. 硼化锆薄膜的制备与红外辐射特性研究[D]. 成都:电子科技大学,2021.
ZHANG M. Research on fabrication and infrared radiation properties of ZrB2 thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[59]
ZHANG M YANG G ZHANG L, et al. Application of ZrB2 thin film as a low emissivity film at high temperature[J]. Applied Surface Science2020527: 146763.
[60]
LI L SHI M LIU X Y, et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage[J]. Advanced Functional Materials202131: 2101381.
[61]
ZHU H Z LI Q TAO C N, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communication202112(1): 1805.
[62]
ZHANG L WANG J LOU J, et al. A thermally robust and optically transparent infrared selective emitter for compatible camouflage[J]. Journal of Materials Chemistry C20219(42): 15018-15025.
[63]
LEE N KIM T LIM J S, et al. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation[J]. ACS Applied Materials & Interfaces201911(23): 21250-21257.
[64]
HUANG Y J PU M B GAO P, et al. Ultra-broadband largescale infrared perfect absorber with optical transparency[J].Applied Physics Express201710(11): 112601.
[65]
YIN J H ZHANG L MA W Z, et al. Research on reducing infrared emissivity of 8YSZ coating by regulating microstructure[J]. Infrared Physics & Technology2023130: 04587.
[66]
李恩博,高元明,张鹏,等. 高温低红外辐射表面材料研究进展[J]. 航空制造技术202063(17):22-28.
LI E B GAO Y M ZHANG P, et al. Research progress of low infrared emissivity coating materials for high-temperature applications[J]. Aeronautical Manufacturing Technology202063(17):22-28.
[67]
ZHANG W G XU G Y SHI X, et al. Ultra-low infrared emissivity at the wavelength of 3-5 μm from Ge/ZnS one-dimensional photonic crystal[J]. Photonics and Nanostructures: Fundamentals and Applications201514: 46-51.
[68]
ZHANG W G LV D D. Preparation and characterization of Si/SiO2 one-dimensional photonic crystal with ultra-low infrared emissivity in the 3-5 μm band[J]. Optik2019202: 163738.
[69]
ZHU H Z LI Q ZHENG C Q, et al. High-temperature infrared camouflage with efficient thermal management[J]. Light Sci Appl20209: 60.
[70]
ZHU H Z LI Q TAO C N, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nat Commun202112(1): 1805.
[71]
WANG L YANG Y TANG X L, et al. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design[J]. Optics Letters202146(20):5224-5227.
[72]
LEE N KIM T LIM J S, et al. Metamaterial selective emitter for maximizing infrared camouflage performance with energy dissipation[J].ACS Appl Mater Interfaces201911(23):21250-21257.
[73]
KIM J HAN K HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports20177(1): 6740.
[74]
PAN M Y HUANG Y LI Q, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy202069: 104449.
[75]
ZHAO L LIU H HE Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt201857(8): 1757-1764.

Comments

PDF(1156 KB)

Accesses

Citation

Detail

Sections
Recommended

/