
Microstructure and properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating prepared by APS
Ang ZHANG, Mengqiu GUO, Changliang WANG, Mei ZHANG, Zhen YUE, Tianying WANG, Zixing NIE, Shen GAO
Microstructure and properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating prepared by APS
To investigate the effect of the spraying process parameters on the properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating, the coating is prepared by atmospheric plasma spray (APS) process based on the orthogonal experiment. The range analysis method is used to study the primary and secondary relationships of the process parameters on the microstructure, hardness, and bonding strength of the NiCoCrAlYTa-Cr2O3-Cu-Mo coating, and the spraying process parameters are optimized. The optimized process parameters are that the argon flow rate is 50 L/min, the hydrogen flow rate is 12 L/min, the current is 500 A, and the spraying distance is 100 mm. With the optimized spraying process parameters, the microstructure of the coating is very dense, the porosity is lower than 1%, and the average bonding strength, hardness, and average oxidation speed during 50-100 h at 900 ℃ are 70.7 MPa, 543.7 HV, and 0.07302 g/(m2·h), respectively. In addition, the friction coefficient and wear rate of NiCoCrAlYTa-Cr2O3-Cu-Mo coating are 0.248 and 2.12×10-6 mm3/(N·m) at 800 ℃, exhibiting good friction and wear properties.
NiCoCrAlYTa-Cr2O3-Cu-Mo coating / atmospheric plasma spray / high-temperature wear-resistant / orthogonal experiment / oxidation resistance / microstructure
[1] |
|
[2] |
|
[3] |
李军,李志刚,张元桥,等. 刷式密封技术的研究进展[J]. 航空发动机,2019,45(2):74-84.
|
[4] |
|
[5] |
|
[6] |
刘笑笑,任先京,章德铭,等. 刷式密封转子涂层材料研究[J]. 热喷涂技术,2011,3(4) :49-52.
|
[7] |
徐乙人,祁志浩,李永健,等. 刷式密封高温摩擦磨损行为[J]. 中国表面工程,2022,35(3):114-121.
|
[8] |
|
[9] |
|
[10] |
张佳平,王璐,杨中元,等. 超音速火焰喷涂含氟化物的碳化铬/镍铬涂层结构及性能[J]. 中国表面工程, 2011,24(2):46-50.
|
[11] |
王长亮,崔永静,汤智慧,等. 超级爆炸喷涂镍基钴基涂层高温氧化及摩擦磨损性能[J]. 装备环境工程,2020,17(1) :90-96.
|
[12] |
崔永静,孙晓萍,陈斌,等. 爆炸喷涂Cr3C2-35NiCr 涂层的组织及性能研究[J]. 热喷涂技术,2014,6(1):31-34.
|
[13] |
苏威铭,张佳平,李浩宇,等. 掺杂银对超音速火焰喷涂NiCr/Cr3C2-BaF2·CaF2涂层的影响[J]. 材料研究与应用,2020,14(2):102-108.
|
[14] |
王长亮,李伟光,陆峰,等. 爆炸喷涂制备BaF2+CaF2+Cr3C2/Ni-Cr涂层的组织及性能[J]. 装备环境工程,2008(5):25-28.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10):1-5.
|
[20] |
崔慧然,李宏然,崔启政,等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术,2019,11(1):82-94.
|
[21] |
|
[22] |
郝恩康,安宇龙,赵晓琴,等. 热喷涂高温自润滑涂层研究现状[J]. 表面技术,2018,47(6):104-111.
|
[23] |
|
[24] |
|
[25] |
王长亮,陈皓晖,张梅,等. 激光辅助热喷涂NiCoCrAlYTa/ZrO2/BaF2·CaF2涂层的组织及性能[J]. 中国表面工程,2022,35(3):84-95.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
祁斌,于海博,梁帅帅,等. NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层高温摩擦磨损性能[J]. 中国表面工程,2022,35(3):104-113.
|
[35] |
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |