Contact angle regulation and performance optimization of composite bipolar plates

Luyao ZHANG, Junsheng ZHENG, Runlin FAN, Pingwen MING

PDF(3512 KB)
PDF(3512 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (6) : 218-226. DOI: 10.11868/j.issn.1001-4381.2024.000055
RESEARCH ARTICLE

Contact angle regulation and performance optimization of composite bipolar plates

Author information +
History +

Abstract

Proton exchange membrane fuel cells (PEMFC) have the advantages of high energy conversion efficiency, low impact of load changes on power generation efficiency, and low harmful substances and carbon emissions. The bipolar plate is one of the key structural components of PEMFC and undertakes the functions of electron transfer, gas distribution, internal water management, and supporting membrane electrode components. Composite bipolar plates have advantages such as light weight, corrosion resistance, and low cost, and have received more attention. However, to maintain the stable operation of fuel cells, it is necessary that water accumulated in the flow channel can be smoothly discharged while ensuring membrane wetting. This poses new requirements for the surface characteristics of bipolar plates. For composite graphite plates, they can adjust the contact angle and regulate the water and gas conditions of PEMFCs by changing their composition and preparation process. This article introduces the addition of carbon nanofibers prepared by chemical vapor deposition (CF-CVD) in the flake graphite-resin composite materials to regulate the hydrophilicity of composite bipolar plates. Additionally, the impact of varying flake graphite particle sizes on the hydrophilicity regulation of these plates is examined. The results reveal that increased carbon fiber content enhances the surface hydrophilicity of bipolar plates, with the smallest contact angle achieving 10.28°. The particle size of flake graphite affects the contact angle of composite bipolar plates. To optimize the hydrophilicity of bipolar plates with CF-CVD, 500-1500 mesh graphite is recommended as the conductive substrate. Specifically, a CF-CVD content of 3%, combined with 1000 mesh flake graphite, yields a hydrophilic composite bipolar plate with superior comprehensive performance, exhibiting a conductivity of 239.33 S/cm and a bending strength of 73.47 MPa.

Key words

composite bipolar plate / contact angle / carbon nanofiber / flake graphite / water management

Cite this article

Download Citations
Luyao ZHANG , Junsheng ZHENG , Runlin FAN , et al. Contact angle regulation and performance optimization of composite bipolar plates. Journal of Materials Engineering. 2025, 53(6): 218-226 https://doi.org/10.11868/j.issn.1001-4381.2024.000055

References

1
王倩倩, 郑俊生, 裴冯来,等. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程201947(4): 1-14.
WANG Q Q ZHENG J S PEI F L, et al. Structural optimization of PEMFC membrane electrode assembly[J]. Journal of Materials Engineering201947(4): 1-14.
2
李伟, 李争显, 刘林涛,等. 多孔金属流场双极板研究进展[J]. 材料工程202048(5): 31-40.
LI W LI Z X LIU L T, et al. Recent progress of porous metal filed in bipolar plate[J]. Journal of Materials Engineering202048(5): 31-40.
3
孙鹏, 李忠芳, 王传刚,等. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程202149(1): 23-34.
SUN P LI Z F WANG C G, et al. Research progress of high temperature proton exchange membranes applied in fuel cells[J]. Journal of Materials Engineering202149(1): 23-34.
4
TANG A CRISCI L BONVILLE L, et al. An overview of bipolar plates in proton exchange membrane fuel cells[J]. Journal of Renewable and Sustainable Energy202113(2): 1-18.
5
BOYACI F G ISIL I G. Effect of surface wettability of polymer composite bipolar plates on polymer electrolyte membrane fuel cell performances[J]. International Journal of Hydrogen Energy201338(10): 4089-4098.
6
BOYACI F G ISIL I G OSMAN O. Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)[J]. Energy201355: 1067-1075.
7
KAHVECI E E TAYMAZ I. Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle[J]. Fuel2019253: 1274-1281.
8
胡鸣若,朱新坚,顾安忠,等. 质子交换膜燃料电池的水热管理[J]. 电池200333(4): 258-260.
HU M R ZHU X J GU A Z, et al. Water and heat management problems in PEM fuel cell[J]. Battery Bimonthly200333(4): 258-260.
9
宋满存. 质子交换膜燃料电池水淹过程研究及故障诊断系统设计[D]. 北京: 清华大学,2013.
SONG M C. Research of flooding process and design of fault diagnosis system for PEM fuel cellls[D]. Beijing: Tsinghua University,2013.
10
XIE F SHAO Z G HOU M, et al. Recent progresses in H-2-PEMFC at DICP[J]. Journal of Energy Chemistry201936: 129-140.
11
WEE J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable & Sustainable Energy Reviews200711(8): 1720-1738.
12
LIU Y T SONG H Y YAO T T, et al. Effects of carbon nanotube length on interfacial properties of carbon fiber reinforced thermoplastic composites[J]. Journal of Materials Science202055(32): 15467-15480.
13
ZHENG J S PENG Y H FAN R L, et al. Study on carbon matrix composite bipolar plates with balance of conductivity and flexural strength[J]. Chinese Chemical Letters202334(5): 1-5.
14
LIN C H LEE J R TENG P J, et al. A hydrophobic surface based on a Ni-P-PTFE coating on a metallic bipolar plate[J]. International Journal of Electrochemical Science201813(3): 3147-3160.
15
谭茜匀,王艳丽. 质子交换膜燃料电池不锈钢双极板的腐蚀行为及其表面防护的研究进展[J]. 表面技术202150(8): 192-200.
TAN Q Y WANG Y L. Research progress on corrosion behavior and surface protection of stainless steel bipolar plate of proton exchange membrane fuel cell[J]. Surface Technology202150(8): 192-200.
16
YAN P F YING T LI Y X, et al. A novel high corrosion-resistant polytetrafluoroethylene /carbon cloth/Ag coating on magnesium alloys as bipolar plates for light-weight proton exchange membrane fuel cells[J]. Journal of Power Sources2021484: 1-9.
17
ZHANG P C HAN Y T SHI J F, et al. ZrC Coating Modified Ti bipolar plate for proton exchange membrane fuel cell[J]. Fuel Cells202020(5): 540-546.
18
LV B SHAO Z G HE L, et al. A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells[J]. Progress in Natural Science-Materials International202030(6): 876-881.
19
DURSUN B YAREN F UNVEROGLU B, et al. Expanded graphite-epoxy-flexible silica composite bipolar plates for PEM fuel cells[J]. Fuel Cells201414(6): 862-867.
20
NOWAK A P SALGUERO T T KIRBY K W, et al. A conductive and hydrophilic bipolar plate coating for enhanced proton exchange membrane fuel cell performance and water management[J]. Journal of Power Sources2012210: 138-145.
21
IJAODOLA O S EL- HASSAN Z OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy2019179: 246-267.
22
ROSENGARTEN G HARVIE D J E COOPER-WHITE J. Contact angle effects on microdroplet deformation using CFD[J]. Applied Mathematical Modelling200630(10): 1033-1042.
23
KUMBUR E C SHARP K V MENCH M M. Validated leverett approach for multiphase flow in PEFC diffusion media[J]. Journal of The Electrochemical Society2007154(12):B1313-B1324.
24
曾浩东. PEMFC用石墨/聚酰亚胺-聚醚醚酮树脂复合双极板的制备与性能研究[D]. 长沙: 中南大学,2022.
ZENG H D. Preparation and properties of graphite/polyimide polyether ketone composite bipolar plate for PEMFC[D]. Changsha: Central South University,2022.
25
蒋华义,张亦翔,梁爱国,等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术201847(1): 60-65.
JIANG H Y ZHANG Y X LIANG A G, et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology201847(1): 60-65.
26
冉红孟,廖秋慧,陶振刚,等. PP/碳纤维复合材料力学性能的研究[J]. 工程塑料应用201543(2): 47-50.
RAN H M LIAO Q H TAO Z G, et al. Research on mechanical properties of carbon fiber reinforced PP composites[J]. Engineering Plastics Application201543(2): 47-50.
27
LEE J H JANG Y K HONG C E, et al. Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells[J]. Journal of Power Sources2009193(2): 523-529.
28
陈惠,刘洪波,夏笑虹,等. 石墨/酚醛树脂复合材料双极板的制备与性能[J]. 复合材料学报201532(3): 744-755.
CHEN H LIU H B XIA X H, et al. Preparation and properties of graphite/phenolic resin composite bipolar plate[J]. Acta Materiae Compositae Sinica201532(3): 744-755.
29
王奔,于晓启,赵国旗,等. 微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价[J]. 复合材料学报202138(3): 788-796.
WANG B YU X Q ZHAO G Q, et al. Ultrasonic guided wave-based evaluation for mechanical properties of interlaminar toughening carbon fiber/epoxy composites with microcapsules[J]. Acta Materiae Compositae Sinica202138(3): 788-796.
30
伊廷会. 酚醛树脂高性能化改性研究进展[J]. 热固性树脂20014: 29-33.
YIN T H. Modification development of phenolic resin[J]. Thermosetting Resin20014: 29-33.
31
DHAKATE S R SHARMA S CHAUHAN N, et al. CNTs nanostructuring effect on the properties of graphite composite bipolar plate[J]. International Journal of Hydrogen Energy201035(9): 4195-4200.
32
LEE H E HAN S H SONG S A, et al. Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC[J]. Composite Structures2015134: 44-51.
33
NAJI A KRAUSE B PÖTSCHKE P, et al. Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications[J]. Polymer Composites201840(8): 3189-3198.
34
U.S. Department of Energy. Department of energy hydrogen program [EB/OL]. [2020-11-12].

Comments

PDF(3512 KB)

Accesses

Citation

Detail

Sections
Recommended

/