
High temperature dynamic compression mechanical behavior of 3D woven carbon/carbon composites
Qin GONG, Xicheng HUANG, Junhong CHEN, Yuxi DUAN
High temperature dynamic compression mechanical behavior of 3D woven carbon/carbon composites
This study investigates the dynamic compressive mechanical properties of three-dimensional woven carbon/carbon composites under both room temperature(25 ℃) quasi-static and from 25 ℃ to 900 ℃ dynamic compression conditions using both a materials testing machine and a split Hopkinson press bar device equipped for simultaneous high-temperature loading. The experimental results reveal that the strength of the composites is influenced by three key factors: fiber orientation, strain rate, and temperature. Specifically, under consistent strain rates and temperatures, the composites exhibit higher strength in the Z-direction compared to the XY-direction. As the strain rate escalates, the strengths of the composites in both the XY-direction and Z-direction increase, indicating a positive correlation with the strain rate. Upon heating from room temperature to 900 ℃, the strengths of both XY-direction and Z-direction composites initially rise, peaking at 600 ℃, and then gradually decline. Under both static and dynamic loading conditions, XY-direction composites undergo shear failure, albeit with a smaller shear fracture angle in the dynamic case compared to the quasi-static scenario. An increase in the strain rate results in a transition in the fracture mode of Z-direction composites, shifting from shear failure to a combination of matrix crushing and partial fiber fracture.
carbon/carbon composites / dynamic compression / high temperature / mechanical property / failure mode
[1] |
翟兆阳,曲雅静,张延超,等.碳纤维增强碳基复合材料加工技术研究与探讨[J].复合材料学报,2022,39(5):2014-2033.
|
[2] |
|
[3] |
龚芹,黄西成,陈军红,等.高温下碳纤维复合材料动态力学性能及相关失效准则的研究进展[J].机械工程材料,2024,48(11):10-22.
|
[4] |
刘大响.一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J].材料工程,2017,45(10):1-5.
|
[5] |
许承海,孟松鹤,齐菲,等.三维机织碳/碳复合材料双轴压缩载荷下的力学行为[J].复合材料学报,2012,29(6):206-211.
|
[6] |
唐见茂.碳纤维树脂基复合材料发展现状及前景展望[J].航天器环境工程,2010,27(3):269-280.
|
[7] |
栾新刚,姚改成,梅辉,等.C/SiC复合材料在航空发动机环境中损伤机理研究[J].航空制造技术,2014(6):93-99.
|
[8] |
邢丽英,包建文,礼嵩明,等.先进树脂基复合材料发展现状和面临的挑战[J].复合材料学报,2016,33(7):1327-1338.
|
[9] |
|
[10] |
王俊山,徐林,李炜,等.航天领域C/C复合材料研究进展[J].宇航材料工艺,2022,52(2):1-12.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
袁秦鲁,李玉龙,李贺军.碳布叠层/碳复合材料动态压缩性能测试研究[J].爆炸与冲击,2007,27(6):541-545.
|
[16] |
|
[17] |
易法军,韩杰才,杜善义 .混杂碳/碳复合材料超高温力学性能实验研究[J].复合材料学报,2003,20(2) : 118-122.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
石建军,任银银,贾彬,等.高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022,42(6):97-106.
|
[25] |
顾善群,张代军,付善龙,等.碳纤维/双马树脂复合材料抗高速冲击性能[J].材料工程,2021,49(11):73-82.
|
[26] |
潘栩,祝诗洋,钟业盛,等.硅改性酚醛/碳纤维复合材料的制备及烧蚀性能[J].材料工程,2023,51(6):150-158.
|
[27] |
|
[28] |
陈波,温卫东,孙煦泽,等.三维编织碳/碳复合材料高温力学及疲劳试验研究[J].南京工业大学学报(自然科学版),2018,40(1):8-16.
|
/
〈 |
|
〉 |