Inverse segregation of tin-phosphorus bronze horizontal continuous casting billet and its effect on rolling edge crack

Songwei WANG, Lianbao ZHENG, Hongwu SONG, Fanya KONG, Yong XU

PDF(14459 KB)
PDF(14459 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (3) : 70-82. DOI: 10.11868/j.issn.1001-4381.2023.000698
RESEARCH ARTICLE

Inverse segregation of tin-phosphorus bronze horizontal continuous casting billet and its effect on rolling edge crack

Author information +
History +

Abstract

During the horizontal continuous casting process, a network of hard and brittle Sn-rich phase is formed at the edges of tin phosphorus bronze casting billet due to inverse segregation, which becomes crack sources during rolling and continuously propagates to induce significant edge cracks in the strip. To solve this problem, the graphite mold structure is improved, and the cooling intensity distribution law of the billet is adjusted to slow down the serious inverse segregation phenomenon caused by excessive cooling of the billet edge. Numerical simulation and experimental verification show that after the optimization of the mold structure, the thickness gradient of the air gap between the side of the billet and the mold is reduced, the solidification shrinkage of the mushy zone is more gentle; the liquid phase surface is more straight, the angle between the liquid phase and the mushy zone is reduced by 18.3°, and the solidification position difference between the middle and the side of the billet is reduced by 18.62 mm. In addition, the billet grain tends to be equiaxial, the Sn-rich phase is transformed from the inter-crystalline stripe to the point distribution, the degree of inverse segregation is reduced. The degree of inverse segregation is reduced, the content of Sn-rich phases in the inverse segregation layer is reduced by 2.3%, and the width of the inverse segregation layer is reduced by 214 μm. The number of cracks at the edge of the rough rolled strip is reduced from 21 before the structural optimization to 4.

Key words

tin-phosphorus bronze / inverse segregation / edge crack / mold structure / solidification shrinkage

Cite this article

Download Citations
Songwei WANG , Lianbao ZHENG , Hongwu SONG , et al . Inverse segregation of tin-phosphorus bronze horizontal continuous casting billet and its effect on rolling edge crack. Journal of Materials Engineering. 2025, 53(3): 70-82 https://doi.org/10.11868/j.issn.1001-4381.2023.000698

References

[1]
刘峰,马吉苗,罗毅,等.高性能超细晶高锡磷青铜合金组织及性能研究[J]. 铜业工程2023(4): 94-101.
LIU F MA J M LUO Y, et al. Microstructure and properties of high-performance ultrafine grain high-tin phosphorus bronze alloy[J]. Copper Engineering2023(4): 94-101.
[2]
姜业欣, 娄花芬, 解浩峰,等. 先进铜合金材料发展现状与展望[J]. 中国工程科学202022(5): 84-92.
JIANG Y X LOU H F XIE H F,et al. Development status and prospects of advanced copper alloy[J]. Strategic Study of CAE202022(5): 84-92.
[3]
罗继辉. 两相区连铸铜锡合金的化学成分和组织性能变化规律及机理[D]. 北京:北京科技大学, 2017.
LUO J H. Evolution and mechanism of chemical composition microstructure and properties for two-phase zone continuous casting Cu-Sn alloy[D]. Beijing:University of Science and Technology Beijing,2017.
[4]
崔忠圻. 金属学与热处理[M]. 北京:机械工业出版社, 2001: 403.
CUI Z Q. Metallography & heat treatment[M]. Beijing: China Machine Press, 2001: 403.
[5]
路俊攀, 张胜华, 覃业霞. 水平连铸带坯QSn 6.5-0.1的组织与性能[J]. 特种铸造及有色合金, 2003(3):57-59.
LU J P ZHANG S H TAN Y X. Microstructure and mechanical properties of QSn6.5-0.1 strip billet in horizontal continuous casting[J]. Special Casting & Nonferrous Alloys2003(3):57-59.
[6]
HAUG E MO A THEVIK H J. Macrosegregation near a cast surface caused by exudation and solidification shrinkage[J]. International Journal of Heat and Mass Transfer199538(9): 1553-1563.
[7]
HUANG S H LI G Q ZHANG Z, et al. Effect of cooling rate on the grain morphology and element segregation behavior of Fe-Mn-Al-C low-density steel during solidification[J]. Processes202210(6): 1101.
[8]
PENG P ZHANG A Q YUE J M, et al. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy[J]. Journal of Materials Science & Technology202175: 21-26.
[9]
张宇, 朱宝丰, 张士杰,等. 基于微观形貌的逆偏析形成机理的数值模拟分析[J/OL].材料科学与工艺, 2023-05-16.
ZHANG Y ZHU B F ZHANG S J, et al. Numerical simulation study on the formation mechanism of reverse segregation based on microscopic morphology[J/OL]. Materials Science and Technology, 2023-05-16.
[10]
胥锴, 胡咏梅, 顾伟,等. 锡磷青铜表面蓝斑的影响因素及控制措施[J]. 上海有色金属200829(4): 161-163.
XU K HU Y M GU W, et al. Influencing factors and controlling measures for bluish spots on phosphor bronze strip[J]. Shanghai Nonferrous Metals200829(4): 161-163.
[11]
郭中凯. 高强高弹Cu-15Ni-8Sn合金的制备及组织性能研究[D]. 大连:大连理工大学, 2021.
GUO Z K. Investigation on the preparation microstructure and property of Cu-15Ni-8Sn alloy with high strength and high elasticity[D]. Dalian:Dalian University of Technology, 2021.
[12]
肖恩奎. 铜锡合金铸件的反偏析[J]. 特种铸造及有色合金1987(2): 6-9.
XIAO E K. Reverse segregation of copper-tin alloy castings[J]. Special Casting & Nonferrous Alloys1987(2): 6-9.
[13]
BENNON W D INCROPERA F P. A continuum model for momentum heat and species transport in binary solid liquid-phase change systems model formulation[J]. International Journal of Heat and Mass Transfer198730(10): 2161-2170.
[14]
CHIANG K C TSAI H L. Shrinkage-induced fluid-flow and domain change in 2-dimensional alloy solidification[J]. International Journal of Heat and Mass Transfer199235(7): 1763-1770.
[15]
CHIANG K C TSAI H L. Interaction between shrinkage-induced fluid-flow and natural-convection during alloy solidification[J]. International Journal of Heat and Mass Transfer199235(7): 1771-1778.
[16]
CHEN J H TSAI H L. Inverse segregation foe a unidirectional solidification of aluminum-copper alloys[J]. International Journal of Heat and Mass Transfer199336(12): 3069-3075.
[17]
FERREIRA I L SANTOS C A VOLLER V R,et al. Analytical, numerical, and experimental analysis of inverse macrosegregation during upward unidirectional solidification of Al-Cu alloys[J]. Metallurgical and Materials Transactions:B200435(2): 285-297.
[18]
MINAKAWA S SAMARASEKERA I V WEINBERG F. Inverse segregation[J]. Metallurgical Transactions:B198516(3): 595-604.
[19]
CHEN K X SHEN H F. Numerical simulation of macrosegregation caused by thermal-solutal convection and solidification shrinkage using ALE model[J]. Acta Metallurgica Sinica(English Letters)201932(11): 1396-1406.
[20]
YU W LI Y JIANG T, et al. Solute inverse segregation behavior in twin roll casting of an Al-Cu alloy[J]. Scripta Materialia2022213: 114592.
[21]
陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007.
CHEN M X. Elastic-plastic mechanics[M]. Beijing: Science Press, 2007.
[22]
于康康, 王松伟, 陈帅峰,等. 锡磷青铜水平连铸坯凝固组织的数值模拟[J]. 中国有色金属学报202333(5): 1378-1389.
YU K K WANG S W CHEN S F,et al. Numerical simulation of solidification microstructure of tin phosphor bronze horizontal continuous casting slab[J]. The Chinese Journal of Nonferrous Metals202333(5):1378-1389.
[23]
潘德清. Cu-15Ni-8Sn合金圆锭的连续铸造成形研究[D]. 广州: 华南理工大学, 2020.
PAN D Q. Research on continuous casting of Cu-15Ni-8Sn alloy round ingot[D].Guangzhou:South China University of Technology, 2020.
[24]
高志明, 介万奇, 刘永勤, 等.微观孔洞和反偏析缺陷的形成机理与耦合预测研究进展[J]. 金属学报201854(5): 717-726.
GAO Z M JIE W Q LIU Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: a review[J]. Acta Metallurgica Sinica201854(5): 717-726.
[25]
胥锴, 邱正来. 黄铜带材冷轧开裂原因及其预防措施[J]. 有色金属加工2008(5): 26-27.
XU K QIU Z L. Cause and preventing measures of brass strip cold-rolling cracking[J]. Nonferrous Metals Processing2008(5): 26-27.
[26]
钟德华. 提高锡磷青铜(QSn 6.5-0.1)带材横向弯曲性能研究[D]. 北京:北京工业大学, 2003.
ZHONG D H. Study on improvement of transverse bending property of tin-phosphor bronze strip[D]. Beijing: Beijing University of Technology, 2003.
[27]
周瑞庭. 锡磷青铜板带材生产的关键技术[J]. 安徽工业大学学报(自然科学版)2007(1): 29-32.
ZHOU R T. Key technology for production of Sn-P bronze plate and strip[J]. Journal of Anhui University of Technology(Natural Science)2007(1): 29-32.
[28]
XUN Y W ZHUN Y Y MAO W F, et al. Superplastic forming technology of aircraft structures for Al-Li alloy and high-strength Al alloy[J]. Journal of Materials Processing Technology199772(2): 183-187.
[29]
付嘉宝. 凝固收缩作用下二元合金凝固过程宏观偏析数值预测[D]. 沈阳:东北大学, 2015.
FU J B. Numerical simulation on macrosegregation formation during binary alloy solidification processes with effect of shrinkage[D]. Shenyang:Northeastern University, 2015.

Comments

PDF(14459 KB)

Accesses

Citation

Detail

Sections
Recommended

/