
Inverse segregation of tin-phosphorus bronze horizontal continuous casting billet and its effect on rolling edge crack
Songwei WANG, Lianbao ZHENG, Hongwu SONG, Fanya KONG, Yong XU
Inverse segregation of tin-phosphorus bronze horizontal continuous casting billet and its effect on rolling edge crack
During the horizontal continuous casting process, a network of hard and brittle Sn-rich phase is formed at the edges of tin phosphorus bronze casting billet due to inverse segregation, which becomes crack sources during rolling and continuously propagates to induce significant edge cracks in the strip. To solve this problem, the graphite mold structure is improved, and the cooling intensity distribution law of the billet is adjusted to slow down the serious inverse segregation phenomenon caused by excessive cooling of the billet edge. Numerical simulation and experimental verification show that after the optimization of the mold structure, the thickness gradient of the air gap between the side of the billet and the mold is reduced, the solidification shrinkage of the mushy zone is more gentle; the liquid phase surface is more straight, the angle between the liquid phase and the mushy zone is reduced by 18.3°, and the solidification position difference between the middle and the side of the billet is reduced by 18.62 mm. In addition, the billet grain tends to be equiaxial, the Sn-rich phase is transformed from the inter-crystalline stripe to the point distribution, the degree of inverse segregation is reduced. The degree of inverse segregation is reduced, the content of Sn-rich phases in the inverse segregation layer is reduced by 2.3%, and the width of the inverse segregation layer is reduced by 214 μm. The number of cracks at the edge of the rough rolled strip is reduced from 21 before the structural optimization to 4.
tin-phosphorus bronze / inverse segregation / edge crack / mold structure / solidification shrinkage
[1] |
刘峰,马吉苗,罗毅,等.高性能超细晶高锡磷青铜合金组织及性能研究[J]. 铜业工程, 2023(4): 94-101.
|
[2] |
姜业欣, 娄花芬, 解浩峰,等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92.
|
[3] |
罗继辉. 两相区连铸铜锡合金的化学成分和组织性能变化规律及机理[D]. 北京:北京科技大学, 2017.
|
[4] |
崔忠圻. 金属学与热处理[M]. 北京:机械工业出版社, 2001: 403.
|
[5] |
路俊攀, 张胜华, 覃业霞. 水平连铸带坯QSn 6.5-0.1的组织与性能[J]. 特种铸造及有色合金, 2003(3):57-59.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
张宇, 朱宝丰, 张士杰,等. 基于微观形貌的逆偏析形成机理的数值模拟分析[J/OL].材料科学与工艺, 2023-05-16.
|
[10] |
胥锴, 胡咏梅, 顾伟,等. 锡磷青铜表面蓝斑的影响因素及控制措施[J]. 上海有色金属, 2008, 29(4): 161-163.
|
[11] |
郭中凯. 高强高弹Cu-15Ni-8Sn合金的制备及组织性能研究[D]. 大连:大连理工大学, 2021.
|
[12] |
肖恩奎. 铜锡合金铸件的反偏析[J]. 特种铸造及有色合金, 1987(2): 6-9.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007.
|
[22] |
于康康, 王松伟, 陈帅峰,等. 锡磷青铜水平连铸坯凝固组织的数值模拟[J]. 中国有色金属学报, 2023, 33(5): 1378-1389.
|
[23] |
潘德清. Cu-15Ni-8Sn合金圆锭的连续铸造成形研究[D]. 广州: 华南理工大学, 2020.
|
[24] |
高志明, 介万奇, 刘永勤, 等.微观孔洞和反偏析缺陷的形成机理与耦合预测研究进展[J]. 金属学报, 2018, 54(5): 717-726.
|
[25] |
胥锴, 邱正来. 黄铜带材冷轧开裂原因及其预防措施[J]. 有色金属加工, 2008(5): 26-27.
|
[26] |
钟德华. 提高锡磷青铜(QSn 6.5-0.1)带材横向弯曲性能研究[D]. 北京:北京工业大学, 2003.
|
[27] |
周瑞庭. 锡磷青铜板带材生产的关键技术[J]. 安徽工业大学学报(自然科学版), 2007(1): 29-32.
|
[28] |
|
[29] |
付嘉宝. 凝固收缩作用下二元合金凝固过程宏观偏析数值预测[D]. 沈阳:东北大学, 2015.
|
/
〈 |
|
〉 |