Research progress in MXene-based shape memory composites

Wu WANG, Chunyang SHAO, Tianjiao CAI, Xuerong ZHU, Xing HU, Shoulin LIU, Shengwei LI, Zhengjun JIANG, Rao SHI, Jie SUN, Zhimin FAN

PDF(5287 KB)
PDF(5287 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (6) : 74-86. DOI: 10.11868/j.issn.1001-4381.2023.000675
REVIEW

Research progress in MXene-based shape memory composites

Author information +
History +

Abstract

MXene, as a new class of two-dimensional(2D)materials, has garnered extensive research interest due to its excellent electrical conductivity, efficient photo-thermal conversion ability, and rich terminal functional groups. However, the susceptibility of MXene to oxidation and its relatively weak mechanical properties have limited its widespread use in various application fields. MXene-based shape memory composites not only enhance the anti-oxidation and mechanical properties of MXene but also endow the material with intelligent response characteristics in macroscopic 3D structures. These properties open new avenues for MXene applications in information transmission, energy conversion, electromagnetic shielding, and fire safety protection. This study aims to review the research progress in MXene-based shape memory composites comprehensively and deeply analyzes their preparation methods, shape memory mechanisms, and application potential, offering valuable references for further research and development, and application of these composites. Meanwhile, the future direction of MXene-based shape memory composites in terms of efficient preparation, performance optimisation, multifunctional development, and their potential stability enhancement and commercialisation challenges are analysed to effectively promote technological advancement and innovation in this field.

Key words

MXene / shape memory effect / composites / actuators / three-dimensional structure

Cite this article

Download Citations
Wu WANG , Chunyang SHAO , Tianjiao CAI , et al . Research progress in MXene-based shape memory composites. Journal of Materials Engineering. 2025, 53(6): 74-86 https://doi.org/10.11868/j.issn.1001-4381.2023.000675

References

[1]
NAGUIB M KURTOGLU M PRESSER V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J].Advanced Materials201123(37):4248-4253.
[2]
KUMAR J A PRAKASH P KRITHIGA T,et al.Methods of synthesis,characteristics,and environmental applications of MXene:a comprehensive review[J].Chemosphere2022286:131607.
[3]
ZHANG Y YAN Y QIU H,et al.A mini-review of MXene porous films:preparation,mechanism and application[J].Journal of Materials Science & Technology2022103:42-49.
[4]
LEI J C ZHANG X ZHOU Z.Recent advances in MXene:preparation,properties,and applications[J].Frontiers of Physics201510:276-286.
[5]
WEI Y LUO W ZHUANG Z,et al.Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances[J].Advanced Composites and Hybrid Materials20214:1082-1091.
[6]
WEI Y XIANG L,OU H,et al.MXene‐based conductive organohydrogels with long‐term environmental stability and multifunctionality[J].Advanced Functional Materials202030(48):2005135.
[7]
FAN Z HE H YU J,et al.Binder-free Ti3C2Tx MXene doughs with high redispersibility[J].ACS Materials Letters20202(12):1598-1605.
[8]
AWASTHI G P MAHARJAN B SHRESTHA S,et al.Synthesis,characterizations,and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects2020586:124282.
[9]
SUN J DU H CHEN Z,et al.MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform[J].Nano Research202115:3653-3659.
[10]
ZHAO L WANG L ZHENG Y,et al.Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring[J].Nano Energy202184:105921.
[11]
PERSSON P O Å ROSEN J.Current state of the art on tailoring the MXene composition,structure,and surface chemistry[J].Current Opinion in Solid State and Materials Science201923(6):100774.
[12]
ZHU C GENG F.Macroscopic MXene ribbon with oriented sheet stacking for high‐performance flexible supercapacitors[J].Carbon Energy20213(1):142-152.
[13]
LIU L ZSCHIESCHE H ANTONIETTI M,et al.Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt[J].Advanced Energy Materials202313(2):2202709.
[14]
CHAUDHARI N K JIN H KIM B,et al.MXene:an emerging two-dimensional material for future energy conversion and storage applications[J].Journal of Materials Chemistry A20175(47):24564-24579.
[15]
ZHANG A LIU R TIAN J,et al.MXene‐based nanocomposites for energy conversion and storage applications[J].Chemistry A European Journal202026(29):6342-6359.
[16]
YU H WANG Y JING Y,et al.Surface modified MXene‐based nanocomposites for electrochemical energy conversion and storage[J].Small201915(25):1901503.
[17]
IQBAL A SAMBYAL P KOO C M.2D MXenes for electromagnetic shielding:a review[J].Advanced Functional Materials202030(47):2000883.
[18]
YUN T KIM H IQBAL A,et al.Electromagnetic shielding of monolayer MXene assemblies[J].Advanced Materials202032(9):1906769.
[19]
王敬枫, 康辉, 成中军,等.Ti3C2T x MXene基电磁屏蔽材料的研究进展[J].材料工程202149(6): 14-25.
WANG J F KANG H CHENG Z J, et al. Research progress in Ti3C2T x MXene- based electromagnetic interference shielding material[J]. Journal of Materials Engineering202149(6): 14-25.
[20]
IQBAL A HONG J KO T Y,et al.Improving oxidation stability of 2D MXenes:synthesis,storage media,and conditions[J].Nano Convergence20218(1):1-22.
[21]
MA Y CHENG Y WANG J,et al.Flexible and highly‐sensitive pressure sensor based on controllably oxidized MXene[J].InfoMat20224(9):e12328.
[22]
XIE F JIA F ZHUO L,et al.Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding[J].Nanoscale201911(48):23382-23391.
[23]
ZHAN X SI C ZHOU J,et al.MXene and MXene-based composites:synthesis,properties and environment-related applications[J].Nanoscale Horizons20205(2):235-258.
[24]
ASLAM M K XU M.A mini-review:MXene composites for sodium/potassium-ion batteries[J].Nanoscale202012(30):15993-16007.
[25]
MA C MA M G SI C,et al.Flexible MXene‐based composites for wearable devices[J].Advanced Functional Materials202131(22):2009524.
[26]
LIU W CHENG Y LIU N,et al.Bionic MXene actuator with multiresponsive modes[J].Chemical Engineering Journal2021417:129288.
[27]
NGUYEN V H TABASSIAN R,OH S,et al.Stimuli‐responsive MXene‐based actuators[J].Advanced Functional Materials202030(47):1909504.
[28]
WANG J MA H LIU Y,et al.MXene-based humidity-responsive actuators: preparation and properties[J].Chem Plus Chem202186(3):406-417.
[29]
CAI G CIOU J H LIU Y,et al.Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices[J].Science Advances20195(7):eaaw7956.
[30]
UMRAO S TABASSIAN R KIM J,et al.MXene artificial muscles based on ionically cross-linked Ti3C2T x electrode for kinetic soft robotics[J].Science Robotics20194(33):eaaw7797.
[31]
DELAEY J DUBRUEL P VAN V S.Shape‐memory polymers for biomedical applications[J].Advanced Functional Materials202030(44):1909047.
[32]
LENDLEIN A GOULD O E C.Reprogrammable recovery and actuation behaviour of shape-memory polymers[J].Nature Reviews Materials20194(2):116-133.
[33]
ZE Q, KUANG X WU S,et al.Magnetic shape memory polymers with integrated multifunctional shape manipulation[J].Advanced Materials202032(4):1906657.
[34]
LIM K R G SHEKHIREV M WYATT B C,et al.Fundamentals of MXene synthesis[J].Nature Synthesis20221(8):601-614.
[35]
ZHANG L SONG W LIU H,et al.Influencing factors on synthesis and properties of MXene:a review[J].Processes202210(9):1744.
[36]
YAN Z LI J CHEN Q,et al.Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries[J].Advanced Composites and Hybrid Materials20225(4):2977-2987.
[37]
WANG W CAI T TANG L, et al. Shape-reconfigurable supramolecular MXene-based memory films[J]. ACS Applied Nano Materials20236(20): 18721-18728.
[38]
LI Q HE H YE X, et al. NIR light-induced functionalized MXene as a dynamic-crosslinker for reinforced polyurethane composites with shape memory and self-healing[J]. Chemical Engineering Journal2023475: 146500.
[39]
JAISWAL S VISHWAKARMA J BHATT S, et al. Layered titanium carbide-mediated fast shape switching and excellent thermal and electrical transport in shape-memory-polymer composites for smart technologies: MAX versus MXene[J]. Advanced Engineering Materials202325(17): 2300233.
[40]
GHIDIU M LUKATSKAYA M R ZHAO M Q,et al.Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance[J].Nature2014516(7529):78-81.
[41]
MONTAZERI K CURRIE M VERGER L, et al. Beyond gold: spin-coated Ti3C2-based MXene photodetectors[J]. Advanced Materials201931(43): 1903271.
[42]
LIU F ZHOU A CHEN J,et al.Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J].Applied Surface Science2017416:781-789.
[43]
HE H XIA Q WANG B,et al.Two-dimensional vanadium carbide(V2CT x )MXene as supercapacitor electrode in seawater electrolyte[J].Chinese Chemical Letters202031(4):984-987.
[44]
GUO Y JIN S WANG L,et al.Synthesis of two-dimensional carbide Mo2CT x MXene by hydrothermal etching with fluorides and its thermal stability[J].Ceramics International202046(11):19550-19556.
[45]
LI T YAO L LIU Q,et al.Fluorine‐free synthesis of high‐purity Ti3C2T x (T= OH,O)via alkali treatment[J].Angewandte Chemie International Edition201857(21):6115-6119.
[46]
YANG S ZHANG P WANG F,et al.Fluoride‐free synthesis of two‐dimensional titanium carbide(MXene)using a binary aqueous system[J].Angewandte Chemie2018130(47):15717-15721.
[47]
LI M LU J LUO K,et al.Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J].Journal of the American Chemical Society2019141(11):4730-4737.
[48]
LIU J JIA X LIU Y,et al.A synergetic strategy of well dispersing hydrophilic Ti3C2T x MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances[J].Composites Science and Technology2022219:109248.
[49]
WANG W CAI T CHENG Z,et al.A shape programmable MXene-based supermolecular nanocomposite film[J].Composites Part A:Applied Science and Manufacturing2022159:106997.
[50]
MENON A V JAGADESHVARAN P L BOSE S.Geometry and mesh size control the EMI shielding in 3D printed conducting shape memory PU structures[J].Journal of Materials Chemistry C202311(13):4474-4485.
[51]
MCLELLAN K LI T SUN Y C,et al.4D Printing of MXene composites for deployable actuating structures[J].ACS Applied Polymer Materials20224(12):8774-8785.
[52]
LIU H DU C LIAO L,et al.Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity[J].Nature Communications202213(1):3420.
[53]
WU S LUO H SHEN W,et al.Rapidly NIR-responsive electrospun shape memory actuators with MXene/CNCs hybrids[J].Materials Letters2022314:131922.
[54]
ZHANG L HUANG Y DONG H,et al.Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor[J].Composites Part B:Engineering2021223:109149.
[55]
GHOLAMIRAD F TAHERI-QAZVINI N.Three-dimensional porous Ti3C2T x MXene-based hybrids formed by charge-driven assembly[J].Chemistry of Materials202133(24):9560-9570.
[56]
WU Z H FENG X L QU Y X,et al.Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity,flame retardance and thermal insulation[J].Composites Communications202337:101402.
[57]
XIE M LI S QI X,et al.Thermal and infrared light self-repairing,high sensitivity,and large strain sensing range shape memory MXene/CNTs/EVA composites fiber strain sensor for human motion monitoring[J].Sensors and Actuators A:Physical2022347:113939.
[58]
GAO S DING J WANG W,et al.MXene based flexible composite phase change material with shape memory,self-healing and flame retardant for thermal management[J].Composites Science and Technology2023234:109945.
[59]
JIN L CAO W WANG P,et al.Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites[J].Nano-Micro Letters202214(1):133.
[60]
JIA X SHEN B ZHANG L,et al.Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation[J].Chemical Engineering Journal2021405:126927.
[61]
FANG Y LI Z LI X,et al.A novel covalent polymerized phase change composite with integrated shape memory,self-healing,electromagnetic shielding and multi-drive thermal management functions[J].Chemical Engineering Journal2023459:141600.
[62]
CHI Z WANG C DONG Y,et al.MXene/epoxy-based shape memory nanocomposites with highly stable thermal-mechanical coupling effect for constructing an effective information transmission medium[J].Composites Science and Technology2022225:109505.
[63]
SHAO Y HU W GAO M,et al.Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage,shape memory and thermal therapy functions[J].Composites Part A:Applied Science and Manufacturing2021143:106291.
[64]
HE Y SHAO Y XIAO Y,et al.Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage,shape memory,and adjustable electromagnetic interference shielding functions[J].ACS Applied Materials & Interfaces202214(4):6057-6070.

Comments

PDF(5287 KB)

Accesses

Citation

Detail

Sections
Recommended

/