Opportunities and challenges of sodium-ion battery

Wentao PAN, Xinling YU, Xulai YANG, Ping XUAN

PDF(3115 KB)
PDF(3115 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (7) : 1-14. DOI: 10.11868/j.issn.1001-4381.2023.000637
INDUSTRIALIZATION OF Na-ION BATTERIES COLUMN

Opportunities and challenges of sodium-ion battery

Author information +
History +

Abstract

As new energy vehicles proliferate and energy storage systems scale up, lithium-ion batteries confront market risks stemming from resource scarcity and price volatility. In this context, sodium-ion batteries have emerged as a promising alternative, leveraging their abundant resources to potentially complement lithium-ion batteries in large-scale electrochemical energy storage and low-speed electric vehicles. Despite the rapid surge in sodium-ion battery research and the onset of commercialization initiatives globally, several market and technological prerequisites persist, posing challenges compared to the well-established lithium-ion battery system. This article provides a concise overview of sodium-ion batteries from a commercialization perspective, tracing their development history and current industry standing. It delves into the core positive and negative electrode materials, costs, and application prospects within the existing sodium storage electrode material systems. Additionally, the article presents a forward-looking analysis of future opportunities and challenges, aiming to guide further advancements in the sodium-ion battery industry.

Key words

sodium-ion battery / lithium-ion battery / cost / industrialization

Cite this article

Download Citations
Wentao PAN , Xinling YU , Xulai YANG , et al. Opportunities and challenges of sodium-ion battery. Journal of Materials Engineering. 2025, 53(7): 1-14 https://doi.org/10.11868/j.issn.1001-4381.2023.000637

References

[1]
DIK A OMER S BOUKHANOUF R. Electric vehicles: V2G for rapid, safe, and green EV penetration[J]. Energies202215(3):803.
[2]
LEBROUHI B BAGHI S LAMRANI B, et al. Critical materials for electrical energy storage: Li-ion batteries[J]. Journal of Energy Storage202255: 105471.
[3]
WEYNELL M WIECHERT U SCHUESSLER J A. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau[J]. Geochimica et Cosmochimica Acta2021293: 205-223.
[4]
杨续来,袁帅帅,杨文静,等.锂离子动力电池能量密度特性研究进展[J].机械工程学报202359(6): 239-254.
YANG X L YUAN S S YANG W J, et al. Research progress on energy density of Li-ion batteries for EVs[J] . Journal of Mechanical Engineering202359(6): 239-254.
[5]
ABRAHAM KM. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Lett20205(11): 3544-3547.
[6]
YU T LI G DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J]. Journal of Alloys and Compounds2023958: 170486.
[7]
NGUYEN-TIEN V DAI Q HARPER G D, et al. Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy[J]. Applied Energy2022321: 119230.
[8]
WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science1976192(4244): 1126-1127.
[9]
JOHNSON W WORRELL W. Lithium and sodium intercalated dichalcogenides: properties and electrode applications[J]. Synthetic Metals19824(3): 225-248.
[10]
MIZUSHIMA K JONES P WISEMAN P, et al. Li x CoO2 (0<x<-1): a new cathode material for batteries of high energy density[J]. Materials Research Bulletin198015(6): 783-789.
[11]
CHAYAMBUKA K MULDER G DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities[J]. Advanced Energy Materials202010(38): 2001310.
[12]
GE P FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics198828/30: 1172-1175.
[13]
STEVENS D A DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society2001148(8): A803.
[14]
杨涵,张一波,李琦,等.面向实用化的钠离子电池碳负极:进展及挑战[J].化工进展202342(8): 4029-4042.
YANG H ZHANG Y B LI Q, et al. Practical carbon anodes for sodium-ion batteries: progress and challenge[J]. Chemical Industry and Engineering Progress202342(8): 4029-4042.
[15]
ZHANG T RAN F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials202131(17): 2010041.
[16]
MIAO Y LIU L XU K, et al. High concentration from resources to market heightens risk for power lithium-ion battery supply chains globally[J]. Environmental Science and Pollution Research202330(24): 65558-65571.
[17]
ZHAO L ZHANG T LI W, et al. Engineering of sodium-ion batteries: opportunities and challenges[J]. Engineering202324: 172-183.
[18]
GIFFIN G A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries[J]. Nature Communications202213(1): 5250.
[19]
BI J DU Z SUN J, et al. On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes[J]. Advanced Materials202335(16): 2210734.
[20]
LIU Y MERINOV B V GODDARD W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali andalkaline earth metals[J]. Proceedings of the National Academy of Sciences2016113(14): 3735-3739.
[21]
LI J PENG C LI J, et al. Insight into sodium storage behaviors in hard carbon by ReaxFF molecular dynamics simulation[J]. Energy & Fuels202236(11): 5937-5952.
[22]
SAYAHPOUR B HIRSH H PARAB S, et al. Perspective: design of cathode materials for sustainable sodium-ion batteries[J]. MRS Energy & Sustainability20229(2): 183-197.
[23]
WANG H GAO X ZHANG S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries[J]. ACS Nano202317(13): 12530-12543.
[24]
ZHAO C LU Y CHEN L, et al. Ni-based cathode materials for Na-ion batteries[J]. Nano Research201912(9): 2018-2030.
[25]
LIU Z LIU J. Structural evolution in P2-type layered oxide cathode materials for sodium-ion batteries[J]. Chemnanomat20228(2): e202100385.
[26]
YABUUCHI N KUBOTA K DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev2014114(23): 11636-11682.
[27]
GUO Z QIAN G WANG C, et al. Progress in electrode materials for the industrialization of sodium-ion batteries[J]. Progress in Natural Science: Materials International202333(1): 1-7.
[28]
JUNG K CHOI J SHIN H, et al. Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries[J]. Solid State Sciences2020106: 106334.
[29]
MU L XU S LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials201527(43): 6928-6933.
[30]
LI L SU G LU C, et al. Effect of lithium doping in P2-type layered oxide cathodes on the electrochemical performances of sodium-ion batteries[J]. Chemical Engineering Journal2022446: 136923.
[31]
MAUGHAN P A NADEN A B IRVINE J T S, et al. High energy density Li/Ni/Co-free O3/P2 sodium layered oxide intergrowth for sodium-ion batteries[J]. Batteries & Supercaps20236(7): e202300089.
[32]
WANG Q LI J JIN H, et al. Prussian-blue materials: revealing new opportunities for rechargeable batteries[J]. Infomat20224(6): e12311.
[33]
HE M DAVIS R CHARTOUNI D, et al. Assessment of the first commercial Prussian blue based sodium-ion battery[J]. Journal of Power Sources2022548: 232036.
[34]
BIE X KUBOTA K HOSAKA T, et al. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries[J]. Journal of Power Sources2018378: 322-330.
[35]
QIAO S DONG S YUAN L, et al. Structure defects engineering in Prussian blue cathode materials for high-performance sodium-ion batteries[J]. Journal of Alloys and Compounds2023950: 169903.
[36]
WANG B LIU S SUN W, et al. Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs[J]. Chemsuschem201912(11): 2415-2420.
[37]
LV Z LING M YUE M, et al. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications[J]. Journal of Energy Chemistry202155: 361-390.
[38]
ZHAO L ZHANG T ZHAO H, et al. Polyanion-type electrode materials for advanced sodium-ion batteries[J]. Materials Today Nano202010: 100072.
[39]
ZHAO A LIU C JI F, et al. Revealing the phase evolution in Na4Fe x P4O12+ x (2≤x≤4) cathode materials[J]. ACS Energy Lett20238(1): 753-761.
[40]
ZHAO A YUAN T LI P, et al. A novel Fe-defect induced pure-phase Na4Fe2.91(PO42P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries[J]. Nano Energy202291: 106680.
[41]
WANG D CAI P ZOU G, et al. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery[J]. Rare Metals202241(1): 115-124.
[42]
YANG Z LI G SUN J, et al. High performance cathode material based on Na3V2(PO42F3 and Na3V2(PO43 for sodium-ion batteries[J]. Energy Storage Materials202025: 724-730.
[43]
KUCINSKIS G NESTEROVA I SARAKOVSKIS A, et al. Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive[J]. Journal of Alloys and Compounds2022895: 162656.
[44]
LIU-THÉATO X INDRIS S HUA W, et al. Self-standing, collector-free maricite NaFePO4/carbon nanofiber cathode endowed with increasing electrochemical activity[J]. Energy Fuels202135(22): 18768-18777.
[45]
TRUSSOV I A KOKHMETOVA S T DRISCOLL L L, et al. Synthesis, structure and electrochemical performance of Eldfellite, NaFe(SO42, doped with SeO4, HPO4 and PO3F[J]. Journal of Solid State Chemistry2020289: 121395.
[46]
PRAJAPATI K A BHATNAGAR A. A review on anode materials for lithium/sodium-ion batteries[J]. Journal of Energy Chemistry202383: 509-540.
[47]
LU B LIN C XIONG H, et al. Hard-carbon negative electrodes from biomasses for sodium-ion batteries[J]. Molecules202328(10): 4027.
[48]
MITTAL U DJUANDHI L SHARMA N, et al. Structure and function of hard carbon negative electrodes for sodium-ion batteries[J]. Journal of Physics: Energy20224(4): 042001.
[49]
NITA C ZHANG B DENTZER J, et al. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries[J]. Journal of Energy Chemistry202158: 207-218.
[50]
LI Y HU Y QI X, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Materials20165: 191-197.
[51]
TIAN Z ZOU Y LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science20229(22): 2201207.
[52]
JIANG L LIU L YUE J, et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte[J]. Advanced Materials202032(2): 1904427.
[53]
LI C XU H NI L, et al. Nonaqueous liquid electrolytes for sodium-ion batteries: fundamentals, progress and perspectives[J]. Advanced Energy Materials202313(40): 2301758.
[54]
VU T T CHEON H J SHIN S Y, et al. Hybrid electrolytes for solid-state lithium batteries: challenges, progress, and prospects[J]. Energy Storage Materials202361: 102876.
[55]
LI Y WU F LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews202251(11): 4484-4536.
[56]
LI K ZHANG J LIN D, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications201910(1): 725.
[57]
YAN L ZHANG G WANG J, et al. Revisiting electrolyte kinetics differences in sodium ion battery: are esters really inferior to ethers? [J]. Energy & Environmental Materials20236(4): e12523.
[58]
OULD D M C MENKIN S SMITH H E, et al. Sodium borates: expanding the electrolyte selection for sodium-ion batteries[J]. Angewandte Chemie2022134(32): e202202133.
[59]
ZHENG X HUANG L YE X, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem20217(9): 2312-2346.
[60]
CHENG F CAO M LI Q, et al. Electrolyte salts for sodium-ion batteries: NaPF6 or NaClO4?[J]. ACS Nano202317(18): 18608-18615.
[61]
JIN Y LE P M L GAO P, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries[J]. Nature Energy20227(8): 718-725.
[62]
GAO L CHEN J CHEN Q, et al. The chemical evolution of solid electrolyte interface in sodium metal batteries[J]. Science Advances20228(6): eabm4606.
[63]
YAMADA Y CHIANG C H SODEYAMA K, et al. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes[J]. ChemElectroChem20152(11): 1687-1694.
[64]
张福明,王静,张鹏,等.有机电解液在钠离子电池中的研究进展[J].材料工程202149(1): 11-22.
ZHANG F M WANG J ZHANG P, et al. Research progress of organic electrolytes for sodium ion batteries[J]. Journal of Materials Engineering 202149(1): 11-22.
[65]
JIANG R HONG L LIU Y, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery[J]. Energy Storage Materials202142: 370-379.
[66]
YONG H LU Z LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application[J]. Advanced Materials201931(21): 1808393.
[67]
YANG S ZHONG J LI S, et al. Revisiting aluminum current collector in lithium-ion batteries: corrosion and countermeasures[J]. Journal of Energy Chemistry202389: 610-634.
[68]
LI X ZHANG J GUO X, et al. An ultrathin nonporous polymer separator regulates Na transfer toward dendrite-free sodium storage batteries[J]. Advanced Materials202335(15): 2203547.
[69]
NUROHMAH A R NISA S S STULASTI K N R, et al. Sodium-ion battery from sea salt: a review[J]. Materials for Renewable and Sustainable Energy202211(1): 71-89.
[70]
曹余良.钠离子电池机遇与挑战[J].储能科学与技术20209(3): 757-761.
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology20209(3): 757-761.
[71]
PETERS J F PEÑA CRUZ A WEIL M. Exploring the economic potential of sodium-ion batteries[J]. Batteries20195(1): 10.
[72]
LI M DU Z KHALEEL M A, et al. Materials and engineering endeavors towards practical sodium-ion batteries[J]. Energy Storage Materials202025: 520-536.
[73]
BLOOMBERG N E F. Battery pack prices cited below $100/kWh for the first time in 2020, while market average sits at $137/kWh[DB/OL].(2020-12-16)[2023-08-27].
[74]
BLOOMBERG N E F. Lithium-ion battery pack prices rise for first time to an average of $151/kWh[DB/OL]. (2022-12-06) [2023-08-27].
[75]
韩继龙,王奎虎,周理龙,等.废旧锂离子电池回收稀有金属锂的研究进展和展望[J].硅酸盐学报202250(10): 2722-2733.
HAN J L WANG K H ZHOU L L, et al. Development on recycling rare metal lithium from waste lithium-ion batteries[J]. Journal of the Chinese Ceramic Society202250(10): 2722-2733.
[76]
CAO H WEN L GUO Z, et al. Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures[J]. New Carbon Materials202237(1): 46-58.
[77]
LIAO X YU J GAO L. Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries[J]. Journal of Solid State Electrochemistry201216: 423-428.
[78]
ZHOU Q LI Y TANG F, et al. Thermal stability of high power 26650-type cylindrical Na-ion batteries[J]. Chinese Physics Letters202138(7): 076501.
[79]
FENG X ZHENG S REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy2019246: 53-64.
[80]
BORDES A MARLAIR G ZANTMAN A, et al. Safety evaluation of a sodium-ion cell: assessment of vent gas emissions under thermal runaway[J]. ACS Energy Lett20227(10): 3386-3391.
[81]
FERNANDES Y,BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources2018389: 106-119.
[82]
BLOOMBERG N E F. 1H 2023 energy storage market outlook [DB/OL]. (2023-03-21) [2023-08-27].

Comments

PDF(3115 KB)

Accesses

Citation

Detail

Sections
Recommended

/