Compressive strength and specific strength of porous nickel foam/resin composite material

Peisheng LIU, Yuyang CHENG, Wei CHENG, Bin CHEN, Xiangyu LI

PDF(1955 KB)
PDF(1955 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (3) : 153-158. DOI: 10.11868/j.issn.1001-4381.2023.000545
RESEARCH ARTICLE

Compressive strength and specific strength of porous nickel foam/resin composite material

Author information +
History +

Abstract

The nickel foam (the average pore diameter is about 2.7 mm,and the porosity is 93.1%) is used for the epoxy resin to coat the pore-struts, and the porous nickel foam/epoxy resin composite is obtained with such pore-struts as a multi-layer structure. The compression performance experiments are conducted on the obtained composite samples, and the mechanical strength is emphatically analyzed. The results show that the compressive strength and the specific strength of the composite samples are both significantly higher than those of the original nickel foam, respectively. When the nickel foam (with a bulk density of about 0.6 g·cm-3) is coated to make nickel foam/resin composite samples (with a bulk density of about 0.72-0.82 g·cm-3), the compressive strength increases from 0.75 MPa to 2.24-2.68 MPa, and the specific strength increases from 1.23 MPa·cm3·g-1 to 3.09-3.27 MPa·cm3·g-1. The relationship between compressive strength and porosity of composite samples conforms to the corresponding mathematical relationship based on the octahedral model theory. According to the relevant mechanical model, the overall failure of the composite samples is caused by the priority failure of the pore-strut core.

Key words

porous material / metal foam / porous composite material / metal foam composite / mechanical property / compressive strength

Cite this article

Download Citations
Peisheng LIU , Yuyang CHENG , Wei CHENG , et al . Compressive strength and specific strength of porous nickel foam/resin composite material. Journal of Materials Engineering. 2025, 53(3): 153-158 https://doi.org/10.11868/j.issn.1001-4381.2023.000545

References

[1]
LIU P S CHEN G F. Porous materials[M]. Boston: Elsevier Science, 2014.
[2]
ATWATER M A GUEVARA L N DARLING K A, et al. Solid state porous metal production: a review of the capabilities, characteristics, and challenges[J]. Advanced Engineering Materials201820(7): 1700766.
[3]
GARCÍA-MORENO F. Commercial applications of metal foams:their properties and production[J]. Materials20169: 20-24.
[4]
DEGISCHER H P KRISZT B. Handbook of cellular metals: production, processing,applications[M].Weinheim:Wiley-VCH, 2002.
[5]
刘培生,崔光,程伟.多孔材料性能模型研究1. 数理关系[J]. 材料工程201947(6): 42-62.
LIU P S CUI G CHENG W. Study on the property model for porous materials 1. mathematical relations[J]. Journal of Materials Engineering201947(6): 42-62.
[6]
ASHBY M F EVANS A FLECK N A, et al. Metal foams: a design guide[M]. Boston:Elsevier Science, 2000.
[7]
WEINBERG K MOTA A ORTIZ M. A variational constitutive model for porous metal plasticity[J]. Computational Mechanics200637(2): 142-152.
[8]
NEU T R KAMM P H Von ELTZ N D, et al. Correlation between foam structure and mechanical performance of aluminium foam sandwich panels[J]. Mater Sci Eng:A2021800: 140260.
[9]
GUESSASMA S BASSIR D. Optimization of the mechanical properties of virtual porous solids using a hybrid approach[J]. Acta Materialia201058(2): 716-725.
[10]
杨碧莲,李星吾,阮莹,等. 多孔Cu/Ni复合材料的电沉积法制备及其性能[J]. 稀有金属材料与工程201948(10): 3215-3220.
YANG B L LI X W RUAN Y, et al. Electrodeposition processing of porous Cu/Ni composites and their performance[J]. Rare Metal Materials and Engineering201948(10):3215-3220.
[11]
SANTOS-COQUILLAT A MARTÍNEZ-CAMPOS E MOHEDANO M, et al. In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications[J]. Surface & Coatings Technology2018347: 358-368.
[12]
王彩凤,李洁. 多孔Si/纳米ZnS复合材料发光的研究[J]. 光电子·激光201425(6): 1129-1133.
WANG C F LI J. Study on luminescence of the composite materials of porous Si/nano-ZnS[J]. Journal of Optoelectronics · Laser201425(6): 1129-1133.
[13]
WANG J X DUAN D L YANG X G, et al. Tensile behavior of nickel foam/polyurethane co-continuous composites[J]. Materials Research Express20196: 095103.
[14]
WANG X X ZHOU Y LI J L,et al. Uniaxial compression mechanical properties of foam nickel/iron-epoxy interpenetrating phase composites[J]. Materials202114: 3523.
[15]
YANG X G DUAN D L ZHANG X, et al. Tensile behaviour of poly(ether-ether-ketone) (PEEK)/Ni foam co-continuous phase composites[J]. Journal of Materials Research and Technology202110: 110-120.
[16]
闫鹏飞, 高婷. 精细化学品化学[M]. 北京:化学工业出版社,2014.
YAN P F GAO T. Fine chemicals chemistry[M]. Beijing: Chemical Industry Press, 2014.
[17]
LIU P S SUN J X. A new simple method to conveniently measure the open porosity of porous metal foams with reticular structure[J]. Multidiscipline Modeling in Materials and Structures202218(2): 277-290.
[18]
GIBSON L J ASHBY M F. Cellular solids: structure and properties[M]. Cambridge: Cambridge University Press, 1999.
[19]
刘培生. 压缩载荷作用下多孔复合材料力学关系的数理推演[J]. 北京信息科技大学学报202338(2): 9-15.
LIU P S. Mathematical deduction of the mechanical relation for porous composite materials under compressive loading[J]. Journal of Beijing Information Science & Technology University202338(2): 9-15.
[20]
温秉权,王宾,路学成. 金属材料手册[M]. 2版.北京:电子工业出版社, 2013.
WEN B Q WANG B LU X C. Metallic materials handbook[M]. 2nd ed.Beijing: Publishing House of Electronics Industry, 2013.

Comments

PDF(1955 KB)

Accesses

Citation

Detail

Sections
Recommended

/