Polyetherimide nanofiber membranes imultaneously enhance interlaminar toughness and in-plane mechanical properties of CF/EP composites prepared by VARI process

Zehao YANG, Bo NING, Zhengguo CHEN, Xuehong XU, Weiping LIU, Yi XUE, Yong LIU, Hui ZHANG, Jianyong YU

PDF(6228 KB)
PDF(6228 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (2) : 202-212. DOI: 10.11868/j.issn.1001-4381.2023.000430
RESEARCH ARTICLE

Polyetherimide nanofiber membranes imultaneously enhance interlaminar toughness and in-plane mechanical properties of CF/EP composites prepared by VARI process

Author information +
History +

Abstract

This study investigates the influence and underlying microstructural mechanisms of electrospun polyetherimide (PEI) nanofiber membranes on the interlaminar toughness and in-plane mechanical properties of vacuum-assisted resin infusion (VARI) process molded carbon fiber/epoxy (CF/EP) composites. It is founded that PEI nanofiber membranes exhibit good wettability with epoxy resin and do not impede resin flow. PEI nanofiber membranes are suitable for the VARI process under the conditions of a 70 ℃ resin infusion temperature and infusion time less than 30 min. Furthermore, they are dissolved completely within 6 minutes at the resin curing temperature of 120 ℃. Incorporation of PEI nanofiber membranes enhances the interlaminar toughness and in-plane mechanical properties of CF/EP composites. Interleaving 15 g/m2 PEI nanofiber membrane in CF/EP composites increases the mode Ⅰ interlaminar fracture toughness, mode Ⅱ interlaminar fracture toughness, and interlaminar shear strength by 55.1%, 65.4%, and 12.2%, respectively. Introducting a 20 g/m2 PEI nanofiber membrane in CF/EP composites enhances the flexural strength and modulus by 10.6% and 9.3%, respectively. Moreover, adopting a 10 g/m2 PEI nanofiber membrane enhances the compression strength and modulus of CF/EP composites by 24.3% and 18.9%, respectively. The in-situ dissolution of PEI nanofiber membranes and the reaction induce phase separation during epoxy resin curing lead to a homogeneous PEI/epoxy resin bi-phase structure in the interlaminar region of CF/EP composites. These structures enhance the resistance to crack propagation and the load transfer capability of the interlaminar resin matrix, probably improvement in interlaminar toughness and in-plane mechanical properties of CF/EP composites.

Key words

carbon fiber reinforced epoxy matrix composite / vacuum-assisted resin infusion / polyetherimide / nanofiber membrane / interlaminar toughness / in-plane mechanical property

Cite this article

Download Citations
Zehao YANG , Bo NING , Zhengguo CHEN , et al . Polyetherimide nanofiber membranes imultaneously enhance interlaminar toughness and in-plane mechanical properties of CF/EP composites prepared by VARI process. Journal of Materials Engineering. 2025, 53(2): 202-212 https://doi.org/10.11868/j.issn.1001-4381.2023.000430

References

[1]
杜善义. 先进复合材料与航空航天[J]. 复合材料学报200724(1): 1-12.
DU S Y. Advance composite material and areospace[J]. Acta Materiae Compositae Sinica200724(1): 1-12.
[2]
董慧民, 安学锋, 益小苏, 等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程201543(5): 89-100.
DONG H M AN X F YI X S, et al. Research progress of low velocity impact of fiber reinforced polymer matrix composites[J]. Journal of Materials Engineering201543(5): 89-100.
[3]
陈珂龙, 张桐, 崔溢, 等. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程201947(7): 11-18.
CHEN K L ZHANG T CUI Y, et al. Progress of hyperbranched polymers (HBPs) as modifiers in epoxy resins [J]. Journal of Materials Engineering201947(7): 11-18.
[4]
刘刚, 张代军, 张晖, 等. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程2010(1): 47-53.
LIU G ZHANG D J ZHANG H, et al. Mechanical properties of nanoparticles modified epoxy matrix and composites [J]. Journal of Materials Engineering2010(1): 47-53.
[5]
李瑜, 邓金飞, 孙昭宜, 等. 端氨基聚硫橡胶增韧改性环氧树脂[J]. 高分子材料科学与工程201935(6): 100-104.
LI Y DNEG J F SUN Z Y, et al. Epoxy resin toughened by amino-terminated polysulfide rubber[J]. Polymer Materials Science & Engineering201935(6): 100-104.
[6]
李斌太, 邢丽英, 包建文, 等. 先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J]. 航空材料学报201636(3): 92-100.
LI B T XING L Y BAO J W, et al. National defense science and technology key laboratory of advanced composite materials R&D progress of aerospace resin-based composite materials[J]. Journal of Aeronautical Materials201636(3): 92-100.
[7]
ZHENG N HUANG Y LIU H Y, et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J]. Composites Science and Technology2017140: 8-15.
[8]
NASH N H YOUNG T M MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites-a review[J]. Materials & Design201585: 582-597.
[9]
JIANG M LIU Y CHENG C, et al. Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone[J]. Polymer Testing201869: 302-309.
[10]
ZHOU S CHEN Z TUSIIME R, et al. Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo[J]. Composites Communications201913: 80-84.
[11]
CHEN Z LUO J HUANG Z, et al. Synergistic toughen epoxy resin by incorporation of polyetherimide and amino groups grafted MWCNTs[J]. Composites Communications202021: 100377.
[12]
董抒华, 李伟东, 丁妍羽, 等. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程201745(9): 52-58.
DONG S H LI W D DING Y Y, et al. Infiltration of Z-direction injection RTM process based on ex-situ toughening technology[J]. Journal of Materials Engineering201745(9): 52-58.
[13]
益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报200826(6): 84-92.
YI X S XU Y H CHENG Q F, et al. Advances in research on high toughness aerospace resin matrix composites [J]. Science & Technology Review200826(6): 84-92.
[14]
卢康逸, 张月义, 杨小平, 等. 碳纤维复合材料层间增强增韧技术研究进展[J]. 航空制造技术202063(18): 14-23.
LU K Y ZHANG Y Y YANG X P, et al. Research progress of interlaminar strengthened and toughened carbon fiber composites[J]. Aeronautical Manufacturing Technology202063(18): 14-23.
[15]
LIU D LI G LI B, et al. In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer[J]. Composites Part A201684: 165-174.
[16]
CHENG C CHEN Z HUANG Z, et al. Simultaneously improving mode Ⅰ and mode Ⅱ fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs[J]. Composites Part A2020129: 105696.
[17]
郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报202239(8): 3674-3683.
ZHENG H LI Y TU H Y. Research on interlayer properties of short fiber intercalated carbon fiber / epoxy composites[J]. Acta Materiae Compositae Sinica202239(8):3674-3683.
[18]
ZHANG J LIN T WANG X. Electrospun nanofibre toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science and Technology201070(11): 1660-1666.
[19]
LI G LI P YU Y, et al. Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers[J]. Materials Letters200862(3): 511-514.
[20]
ZHANG H LIU Y KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A201570: 102-110.
[21]
董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报201431(2): 273-285.
DONG H M YI X S AN X F, et al. Development of interleaved fiber-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica201431(2): 273-285.
[22]
杨金水, 肖加余, 曾竟成, 等. 真空导入模塑工艺中织物预成型体的可压缩性[J]. 复合材料学报201128(6): 1-7.
YANG J S XIAO J Y ZENG J C, et al. Compressibility of fabric preforms in vacuum infusion molding process[J]. Acta Materiae Compositae Sinica201128(6): 1-7.
[23]
李刚. 聚砜纳米纤维膜增韧环氧树脂及其碳纤维复合材料的研究[D]. 北京:北京化工大学, 2008.
LI G. Study on polysulfone nanofibrous membranes toughened epoxy resin and carbon fiber composite[D]. Beijing: Beijing University of Chemical Technology, 2008.
[24]
黄智彬, 李刚, 李鹏, 等. 聚砜纳米纤维增韧CFRP的制备及性能[J]. 复合材料学报200825(5): 25-32.
HUANG Z B LI G LI P, et al. Preparation and properties of carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers[J]. Acta Materiae Compositae Sinica200825(5): 25-32.
[25]
钟翔屿, 张代军, 包建文, 等. 增韧剂含量对国产高强中模炭纤维环氧复合材料耐冲击性能的影响[J]. 固体火箭技术201740(3): 372-379.
ZHONG X Y, ZHANG D J, BAO J W, Effect of toughening thermoplastic particles content on impact resistance of epoxy matrix composite reinforced by domestic intermediate modulus carbon fiber [J]. Journal of Solid Rocket Technology201740(3): 372-379.
[26]
LAN B LIU Y MO S, et al. Interlaminar fracture behavior of carbon fiber/polyimide composites toughened by interleaving thermoplastic polyimide fiber veils[J]. Materials202114(10): 2695.
[27]
MA Y J ZHUANG Y P LI C W, et al. Interlaminar mechanical properties and toughening mechanism of highly thermally stable composite modified by polyacrylonitrile nanofiber films[J]. Polymers202214(7): 1348.
[28]
WANG Y LIU X CHEN L, et al. Simultaneously improve the mode Ⅱ interlaminar fracture toughness, flexural properties, and impact strength of CFRP composites with short aramid fiber interlaminar toughening[J]. Polymer Composites202243(11): 8437-8442.
[29]
姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报201936(5): 1083-1091.
YAO J W LIU M Y NIU Y F. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composite[J]. Acta Materiae Compositae Sinica201936(5): 1083-1091.
[30]
CHO J B HWANG J W CHO K, et al. Effects of morphology on toughening of tetrafunctional epoxy resins with poly(ether imide)[J]. Polymer199334(23): 4832-4836.
[31]
JIANG H CHENG F HU Y, et al. Micro-mechanics modeling of compressive strength and elastic modulus enhancements in unidirectional CFRP with aramid pulp micro/nano-fiber interlays[J]. Composites Science and Technology2021206: 108664.
[32]
BEYLERGIL B TANOĞLU M AKTAŞ E. Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6,6 electrospun nanofibers[J]. Journal of Applied Polymer Science2017134(35): 45244.
[33]
İNAL O KATNAM K B POTLURI P, et al. Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils[J]. Aeronautical Journal2022126(1295): 222-248.

Comments

PDF(6228 KB)

Accesses

Citation

Detail

Sections
Recommended

/