
Polyetherimide nanofiber membranes imultaneously enhance interlaminar toughness and in-plane mechanical properties of CF/EP composites prepared by VARI process
Zehao YANG, Bo NING, Zhengguo CHEN, Xuehong XU, Weiping LIU, Yi XUE, Yong LIU, Hui ZHANG, Jianyong YU
Polyetherimide nanofiber membranes imultaneously enhance interlaminar toughness and in-plane mechanical properties of CF/EP composites prepared by VARI process
This study investigates the influence and underlying microstructural mechanisms of electrospun polyetherimide (PEI) nanofiber membranes on the interlaminar toughness and in-plane mechanical properties of vacuum-assisted resin infusion (VARI) process molded carbon fiber/epoxy (CF/EP) composites. It is founded that PEI nanofiber membranes exhibit good wettability with epoxy resin and do not impede resin flow. PEI nanofiber membranes are suitable for the VARI process under the conditions of a 70 ℃ resin infusion temperature and infusion time less than 30 min. Furthermore, they are dissolved completely within 6 minutes at the resin curing temperature of 120 ℃. Incorporation of PEI nanofiber membranes enhances the interlaminar toughness and in-plane mechanical properties of CF/EP composites. Interleaving 15 g/m2 PEI nanofiber membrane in CF/EP composites increases the mode Ⅰ interlaminar fracture toughness, mode Ⅱ interlaminar fracture toughness, and interlaminar shear strength by 55.1%, 65.4%, and 12.2%, respectively. Introducting a 20 g/m2 PEI nanofiber membrane in CF/EP composites enhances the flexural strength and modulus by 10.6% and 9.3%, respectively. Moreover, adopting a 10 g/m2 PEI nanofiber membrane enhances the compression strength and modulus of CF/EP composites by 24.3% and 18.9%, respectively. The in-situ dissolution of PEI nanofiber membranes and the reaction induce phase separation during epoxy resin curing lead to a homogeneous PEI/epoxy resin bi-phase structure in the interlaminar region of CF/EP composites. These structures enhance the resistance to crack propagation and the load transfer capability of the interlaminar resin matrix, probably improvement in interlaminar toughness and in-plane mechanical properties of CF/EP composites.
carbon fiber reinforced epoxy matrix composite / vacuum-assisted resin infusion / polyetherimide / nanofiber membrane / interlaminar toughness / in-plane mechanical property
[1] |
杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007,24(1): 1-12.
|
[2] |
董慧民, 安学锋, 益小苏, 等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
|
[3] |
陈珂龙, 张桐, 崔溢, 等. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
|
[4] |
刘刚, 张代军, 张晖, 等. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010(1): 47-53.
|
[5] |
李瑜, 邓金飞, 孙昭宜, 等. 端氨基聚硫橡胶增韧改性环氧树脂[J]. 高分子材料科学与工程, 2019, 35(6): 100-104.
|
[6] |
李斌太, 邢丽英, 包建文, 等. 先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J]. 航空材料学报, 2016, 36(3): 92-100.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
董抒华, 李伟东, 丁妍羽, 等. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
|
[13] |
益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报, 2008, 26(6): 84-92.
|
[14] |
卢康逸, 张月义, 杨小平, 等. 碳纤维复合材料层间增强增韧技术研究进展[J]. 航空制造技术, 2020, 63(18): 14-23.
|
[15] |
|
[16] |
|
[17] |
郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285.
|
[22] |
杨金水, 肖加余, 曾竟成, 等. 真空导入模塑工艺中织物预成型体的可压缩性[J]. 复合材料学报, 2011, 28(6): 1-7.
|
[23] |
李刚. 聚砜纳米纤维膜增韧环氧树脂及其碳纤维复合材料的研究[D]. 北京:北京化工大学, 2008.
|
[24] |
黄智彬, 李刚, 李鹏, 等. 聚砜纳米纤维增韧CFRP的制备及性能[J]. 复合材料学报, 2008, 25(5): 25-32.
|
[25] |
钟翔屿, 张代军, 包建文, 等. 增韧剂含量对国产高强中模炭纤维环氧复合材料耐冲击性能的影响[J]. 固体火箭技术, 2017, 40(3): 372-379.
ZHONG X Y, ZHANG D J, BAO J W, Effect of toughening thermoplastic particles content on impact resistance of epoxy matrix composite reinforced by domestic intermediate modulus carbon fiber [J]. Journal of Solid Rocket Technology, 2017, 40(3): 372-379.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5): 1083-1091.
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
/
〈 |
|
〉 |