Numerical simulation of vacuum centrifugal casting Incoloy825 alloy pipe

Xiaodong DU, Wei YU, Xue YANG, Haojie WANG, Guohuai LIU, Zhaodong WANG

PDF(5714 KB)
PDF(5714 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (6) : 117-125. DOI: 10.11868/j.issn.1001-4381.2023.000265
RESEARCH ARTICLE

Numerical simulation of vacuum centrifugal casting Incoloy825 alloy pipe

Author information +
History +

Abstract

To investigate the solidification behavior and microstructure characteristics of Incoloy825 alloy pipe by using the vacuum centrifugal casting (VCC) process, a simulation model of VCC is established using ProCAST software to simulate and calculate the filling and solidification process of the alloy. The results show that the metal liquid exhibits good forming effects at pouring temperatures between 1480 ℃ and 1520 ℃. When the mold rotation speed exceeds 800 r/min, the metal liquid can be uniformly distributed along the mold wall. The pouring temperature above 1480 ℃ reduces the shrinkage rate to 0%-1.33%. At the pouring temperature of 1520 ℃ and the mold rotation speed of 800 r/min, the initial solidification time for the lower, middle, and upper parts of the casting is 9.61, 12.53 s, and 14.32 s, respectively. Based on the simulation results, optimal process parameters are determined and casting experiments are conducted. Microstructure analysis of the castings reveals that the average length of dendrites from the center to the outer layer of the casting gradually decreases from 271 μm to 121 μm, indicating a significant grain size gradient along the cooling direction of the microstructure.

Key words

vacuum centrifugal casting / Incoloy825 / numerical simulation / filling process / as-cast structure / free dendrite

Cite this article

Download Citations
Xiaodong DU , Wei YU , Xue YANG , et al . Numerical simulation of vacuum centrifugal casting Incoloy825 alloy pipe. Journal of Materials Engineering. 2025, 53(6): 117-125 https://doi.org/10.11868/j.issn.1001-4381.2023.000265

References

[1]
袁和 .苛刻油气井环境中镍基合金腐蚀行为研究[D].西安:西安石油大学,2020.
YUAN H. Study on corrosion behavior of nickel-based alloy in harsh oil and gas well environment[D]. Xi’an: Xi’an Shiyou University, 2020.
[2]
贾璐,李永堂.基于42CrMo环件短流程离心铸造工艺数值模拟研究[J]. 铸造设备与工艺2016(3):19-23.
JIA L LI Y T. Numerical simulation of short-flow centrifugal casting process based on 42CrMo ring[J]. Casting Equipment and Technology2016 (3): 19-23.
[3]
WANG Y QIN F QI H,et al .Interfacial bonding behavior and mechanical properties of a bimetallic ring blank subjected to centrifugal casting process[J].Journal of Materials Engineering and Performance202231(4):3249-3261.
[4]
王玮东,马颖澈,周理想,等 .真空感应冶炼中熔体流场和温度场的计算机模拟[J].热加工工艺201645(19):73-76.
WANG W D MA Y C ZHOU L X, et al. Computer simulation of melt flow field and temperature field in vacuum induction smelting[J]. Hot Working Technology201645 (19): 73-76.
[5]
邓传杰,汪选国,杜学铭 .离心铸造复合管外层充型与凝固数值模拟[J].铸造技术201637(6):1197-1201.
DENG C J WANG X G DU X M. Numerical simulation of outer filling and solidification of centrifugal casting composite pipe[J]. Foundry Technology201637 (6): 1197-1201.
[6]
陈瑞润,王新秀,王琪,等 .超大型高钼铸铁缸套离心铸造过程数值模拟[J].特种铸造及有色合金202242(5):529-535.
CHEN R R WANG X X WANG Q, et al. Numerical simulation of centrifugal casting process of super-large high molybdenum cast iron cylinder liner[J]. Special Casting and Nonferrous Alloys202242 (5): 529-535.
[7]
刘贞露,肖文丰,孟祥炜,等 .基于ProCast的K4169高温合金铸件离心铸造工艺数值模拟[J].热加工工艺201746(9):104-107.
LIU Z L XIAO W F MENG X W, et al. Numerical simulation of centrifugal casting process of K4169 superalloy castings based on ProCast[J]. Hot Working Technology201746 (9): 104-107.
[8]
韩少丽,骆合力,李尚平,等 .K4169合金离心铸管工艺模拟及试制研究[J].铸造202170(3):373-377.
HAN S L LUO H L LI S P, et al. Study on process simulation and trial production of centrifugal casting pipe of K4169 alloy[J]. Foundry202170 (3): 373-377.
[9]
张伯明. 离心铸造[M]. 北京:机械工业出版社, 2004.
ZHANG B M. Centrifugal casting[M]. Beijing: China Machine Press, 2004.
[10]
霍苗,李思晨,张鹏,等. 单晶高温合金对接铸件内缩松缺陷的数值模拟[J].热加工工艺202352(17):59-62.
HUO M LI S C ZHANG P, et al. Numerical simulation of internal shrinkage porosity in butted single crystal superalloy castings[J]. Hot Working Technology202352(17): 59-62.
[11]
宋广. 离心铸造装置设计及充型凝固过程实验研究与数值模拟[D].哈尔滨:哈尔滨工业大学,2008.
SONG G. Design of centrifugal casting device and experimental study and numerical simulation of mold filling and solidification process[D]. Harbin: Harbin Institute of Technology, 2008.
[12]
钟强强,王晶.ProCAST在汽车轮毂制造中的应用[J].有色金属材料与工程201839(6):16-22.
ZHONG Q Q WANG J. Application of ProCAST in automobile hub manufacturing[J]. Nonferrous Metals Materials and Engineering201839 (6): 16-22.
[13]
XU S YIN Y XIAO G,et al .Physical simulation of fluid frontal motion morphology in filling process of titanium alloy vertical centrifugal casting[J].Procedia Manufacturing201937(1):51-58.
[14]
王操. 离心铸造与轧制制备AZ91镁合金板材成型工艺研究[D].沈阳:沈阳工业大学,2017.
WANG C. Study on forming technology of AZ91 magnesium alloy sheet by centrifugal casting and rolling[D]. Shenyang: Shenyang University of Technology, 2017.
[15]
马秀萍,周同金,刘东方,等 .真空感应熔炼工艺对镍基高温合金氧氮含量的影响[J].铸造201968(7):730-733.
MA X P ZHOU T J LIU D F, et al. Effect of vacuum induction melting process on oxygen and nitrogen content of nickel-based superalloy[J]. Casting201968 (7): 730-733.
[16]
YUN L ZHOU J X,HAI N,et al .A shrinkage cavity model based on pressure distribution for Ti-6Al-4V vertical centrifugal castings[J].Journal of Materials Processing Technology2018251 (1):295-304.

Comments

PDF(5714 KB)

Accesses

Citation

Detail

Sections
Recommended

/