High temperature oxidation behavior of S30815 heat resistant stainless steel substrates and welded joint

Jie REN, Li ZHANG, Chengzhi LIU, Shengwei CHENG, Xiaojian DU, Yanlian LIU, Fei YANG

PDF(11916 KB)
PDF(11916 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (5) : 214-225. DOI: 10.11868/j.issn.1001-4381.2023.000115
RESEARCH ARTICLE

High temperature oxidation behavior of S30815 heat resistant stainless steel substrates and welded joint

Author information +
History +

Abstract

The oxidation kinetics and microstructure of S30815 heat resistant stainless steel, both in its base material and welded joint, are analyzed at different service temperatures by the constant temperature oxidation method. High temperature oxidation kinetic curves are obtained by the mass gain method. The morphology, composition, and microstructure of the oxide films are studied by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. The results show that under constant temperature oxidation conditions at 780 ℃, there is less mass gain and a relatively lower oxidation rate. The oxidation products are mainly Cr2O3, Fe2O3, and Fe3Mn3O8, exhibit sheet, strip, and polyhedron shapes. At 880 ℃, the mass gain and the oxidation rate significantly increase. The oxidation product at this temperature comprises a mixed oxide of Cr2O3, Fe3O4, MnFe2O4, and Ni (Cr2O4), which is mainly in thin strips and sheets. The oxidation kinetics curves of S30815 follow a parabolic rule. With the increase of oxidation time, the oxidation rate gradually decreases and eventually tends to be stable, showing a good oxidation resistance at high temperature. A larger amount of dense Cr2O3 oxide film is generated on the surface of the welded joint, exhibiting a lower average oxidation rate and better oxidation resistance compared to the base material.

Key words

heat resistant stainless steel / welded joint / oxidation kinetics / oxidation product / oxidation resistance property

Cite this article

Download Citations
Jie REN , Li ZHANG , Chengzhi LIU , et al . High temperature oxidation behavior of S30815 heat resistant stainless steel substrates and welded joint. Journal of Materials Engineering. 2025, 53(5): 214-225 https://doi.org/10.11868/j.issn.1001-4381.2023.000115

References

[1]
马双忱,杨鹏威,王放放,等.“双碳”目标下传统火电面临的挑战与对策[J].华电技术202143(12):36-45.
MA S C YANG P W WANG F F,et al.Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J].Huadian Technology202143(12):36-45.
[2]
陈瀚.超临界、超超临界锅炉用钢[J].中国金属通报2019(1):226-228.
CHEN H.Steel for supercritical and ultra-supercritical boilers[J].China Metal Bulletin2019(1):226-228.
[3]
WANG H L YU W S SHEN S P.Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: a review[J].Science China Technological Sciences201962(8):1246-1254.
[4]
WEI Y FU Y PAN Z M,et al.Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: a review[J].International Journal of Minerals,Metallurgy and Materials202128(6):915-930.
[5]
GAO Q Z LIU Z Y LI H J,et al.High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: effect of cold rolling[J].Journal of Materials Science & Technology202168(9):91-102.
[6]
XU W SZPUNAR J A.Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N[J].Journal of Alloys and Compounds2018752:40-52.
[7]
CAI X C DING S J JIN S B,et al.Superior high-temperature oxidation resistance of nanocrystalline 304 austenitic stainless steel containing a small amount of Si[J].Scripta Materialia2021204:114115.
[8]
孟重重,杨小容,张华煜,等.309SMOD奥氏体耐热不锈钢的高温氧化行为[J].金属热处理202146(11):24-28.
MENG C C YANG X R ZHANG H Y,et al.High temperature oxidation behavior of 309SMOD austenitic heat-resistant stainless steel[J].Heat Treatment of Metals202146(11):24-28.
[9]
孟倩,李东阳,杨江仁,等.310S耐热钢的高温氧化行为[J].材料工程202250(9):137-149.
MENG Q LI D Y YANG J R,et al.High temperature oxidation behavior of 310S heat-resistant steel[J].Journal of Materials Engineering202250(9):137-149.
[10]
涂有旺,朱丽慧.钒的添加对S30432耐热钢高温抗氧化性能的影响[J].材料热处理报202243(12):125-132.
TU Y W ZHU L H.Effect of V addition on high-temperature oxidation resistance of S30432 heat-resistant steel[J].Transactions of Materials and Heat Treatment202243(12):125-132.
[11]
张英波,邹德宁,魏统宇,等.铝对铁素体耐热不锈钢高温氧化行为的影响[J].钢铁202156(4):70-75.
ZHANG Y B ZOU D N WEI T Y,et al.Effect of Al on high-temperature oxidation behavior of a ferritic heat-resistant stainless steel[J].Iron and Steel202156(4):70-75.
[12]
PARK S J LEE K H SEO S M,et al.Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000 ℃ by compositional variations[J].Rare Metals201839:1-10.
[13]
杨礼林,齐建波,赵莉萍,等.稀土Ce对253MA耐热钢凝固组织及夹杂物的影响[J].金属热处理202045(1):26-30.
YANG L L QI J B ZHAO L P,et al.Effect of rare earth Ce on solidification structure and inclusions of 253MA heat-resistant steel[J].Heat Treatment of Metals202045(1):26-30.
[14]
韩肈俊.3种新型奥氏体耐热不锈钢253MA、153MA和353MA评述介绍[J].沈阳工程学院学报(自然科学版)20095(2):169-174.
HAN Z J.A review on three new austenitic heat resistant stainless steel 253MA,153MA and 353MA[J].Journal of Shenyang Institute of Engineering(Natural Science)20095(2):169-174.
[15]
陈帅超,申澎洋,赵轶鹏,等.耐热钢253MA冶炼试验研究[J].特钢技术201925(2):14-17.
CHEN S C SHEN P Y ZHAO Y P,et al.Experimental study on smelting of 253MA heat resistant steel[J].Special Steel Technology201925(2):14-17.
[16]
李丹,何琨,孙丹琦,等.奥氏体不锈钢焊缝中δ铁素体含量测量方法对比[J].理化检验-物理分册202258(2):40-44.
LI D HE K SUN D Q,et al.Comparison of δ ferrite content measurement methods in austenitic stainless steel weld[J].Physical Testing and Chemical Analysis202258(2):40-44.
[17]
WEI L L ZHENG J H CHEN L Q,et al.High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J].Corrosion Science2018142:79-92.
[18]
FUJIKAWA H NEWCOMB S B.High temperature oxidation behaviour of high Al content ferritic and austenitic stainless steels with and without rare-earth element addition[J]. Oxidation of Metals201277(1/2):85-92.
[19]
YOO K B HE Y LEE H S,et al.Study of the scale formed on super 304H boiler tube steels after long-term steam oxidation at high temperatures[J].Materials Characterization2018146:71-80.
[20]
RIFFARD F BUSCAIL H CAUDRON E,et al. In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000 ℃[J].Materials Characterization200249(1):55-65.
[21]
CHEN H S WANG H B SUN Q Z,et al.Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor[J].Corrosion Science2018145:90-99.
[22]
李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.
LI M S.High temperature corrosion of metals[M].Beijing:Metallurgical Industry Press,2001.
[23]
COX M G C MCENANEY B SCOTT V D.A chemical diffusion model for partitioning of transition elements in oxide scales on alloys[J].Philosophical Magazine197226(4):839-851.
[24]
NING L JI X PRUD'HOMME N,et al.Residual stresses in oxide scale formed on Fe-17Cr stainless steel[J].Applied Surface Science2014316(15):108-113.
[25]
FU G Y WEI L Q SHAN Y,et al.Influence of a Cr2O3 glass coating on enhancing the oxidation resistance of 20MnSiNb structural steel[J].Surface & Coatings Technology2016294:8-14.
[26]
滕铝丹,张拓,臧其玉,等.Nb对铸造双相耐热钢高温氧化的影响[J].钢铁研究学报201931(4):415-423.
TENG L D ZHANG T ZANG Q Y,et al.Effect of Nb on high temperature oxidation behavior in cast duplex heat-resistance steel[J].Journal of Iron and Steel Research201931(4):415-423.

Comments

PDF(11916 KB)

Accesses

Citation

Detail

Sections
Recommended

/