
Dimensional stabilization of 55%SiCp/Al composites
Yan CUI, Pengwei LI, Shuo LI, Leigang CAO, Yue YANG, Yuan LIU
Dimensional stabilization of 55%SiCp/Al composites
High volume fraction SiCp/Al composites characterized by high modulus and low expansion have great application potential in the field of aerospace precision instruments. In this application scenario, it is necessary to deepen the study of the dimensional stability of the materials and further improve the precision stability of components. Three kinds of SiC particle-reinforced high volume (55%) aluminum matrix composites with the average particle size (D 50) of 14, 76 μm, and gradation of 14 μm and 76 μm are treated with different dimensional stabilization treatments, such as the solid solution aging, the thermal-cold cycling treatment with different temperature parameters after the solid solution, the thermal-cold cycling treatment, etc. After the treatment, the dimensional stability of the samples is tested with the control samples for five times at a low temperature of 180 ℃ thermal loading environment. The results show that compared with the 14 μm particle-reinforced samples, the 76 μm particle-reinforced samples and the gradation of 14 μm and 76 μm particle-reinforced samples show better dimensional stability, the size change rate (dV/V) of the control samples can be stabilized at about 1×10-3. Among the five dimensional stabilization treatment regimes, the effect of -196-191 ℃ (4 times) thermal-cold cycling treatment after the solid solution is the most significant, the size change rate (dV/V) of the samples after this treatment can be stabilized at 10-4 orders of magnitude. According to the comparison of X-ray diffraction patterns, the thermal-cold cycling treatment after the solid solution can promote the precipitation of the strengthening phase of Al2Cu significantly.
SiCp/Al composites / dimensional stability / thermal-cold cycling treatment / strengthening phase
[1] |
王燕, 朱晓林, 朱宇宏, 等. 金属基复合材料概述[J]. 中国标准化, 2013(5): 33-37.
|
[2] |
李滋阳, 王思佳, 邓文举. 陶瓷颗粒增强金属基复合材料研究进展[J]. 轻工科技, 2021, 37(4): 41-44.
|
[3] |
李建宇, 吕书林, 吴树森, 等. 超声振动对纳米SiCp/Al-5Cu复合材料组织与性能的影响[J]. 航空材料学报, 2018, 38(4): 93-100.
|
[4] |
Suppl 1
|
[5] |
崔岩, 廖家杰, 曹雷刚, 等. 中高体积分数SiCp/Al复合材料的力学性能及强化机制[J]. 材料工程, 2024, 52(4): 110-119.
|
[6] |
武高辉, 姜龙涛, 陈国钦, 等. 仪表级复合材料在惯性仪表中的应用进展[J]. 导航定位与授时, 2014, 1(1): 63-68.
|
[7] |
崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6): 3-6.
|
[8] |
程思扬, 曹琪, 包建勋, 等. 中高体积分数SiCp/Al复合材料研究进展[J]. 中国光学, 2019, 12(5): 1064-1075.
|
[9] |
康靖, 阎峰云, 陈体军, 等. SiC体积分数和热处理对SiC/2024Al复合材料性能的影响[J]. 热加工工艺, 2020, 49(12): 74-77.
|
[10] |
聂俊辉, 樊建中, 魏少华, 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用[J]. 航空制造技术, 2017(16): 26-36.
|
[11] |
包建勋. 高体分SiC/Al与若干电子封装基板材料的对比[J]. 电子测试, 2015(19): 121-122.
|
[12] |
崔岩, 董和谦, 曹雷刚, 等. 55%SiCp/2024Al复合材料时效过程的微观组织与力学性能[J]. 金属热处理, 2022, 47(1): 142-148.
|
[13] |
王韬. 高体分SiCp/Al基复合材料的粉末冶金法制备及其性能研究[D]. 西安:西安理工大学, 2018.
|
[14] |
董翠鸽, 王日初, 彭超群, 等. SiCp/Al复合材料研究进展[J]. 中国有色金属学报, 2021, 31(11): 3161-3181.
|
[15] |
武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
|
[16] |
|
[17] |
王秀芳, 武高辉, 姜龙涛, 等. 冷热循环处理对SiCp/2024Al尺寸稳定性的影响[J]. 材料热处理学报, 2006, 27(1): 23-27.
|
[18] |
顾开选, 王凯凯, 郭嘉, 等. 采用圆环三角试样评价材料的尺寸稳定性[J]. 理化检验(物理分册), 2021, 57(6): 21-26.
|
[19] |
武高辉, 修子扬, 孙东立, 等. SiCp/2024Al复合材料尺寸稳定化处理工艺研究[J]. 材料科学与工艺, 2009, 17(6): 879-881.
|
[20] |
石悦. 2024铝合金变形及热处理过程中组织演变及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[21] |
吕可欣. 2xxx系铝合金主要强化相的微观结构研究[D]. 上海: 上海交通大学, 2019.
|
[22] |
孙丽, 牛凤姣, 伍翠兰, 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2019, 48(9): 2944-2950.
|
[23] |
宋宇峰, 肖来荣, 丁学锋, 等. 残余应力和第二相对Al-Cu-Mg合金微尺寸变化的影响[J]. 中国有色金属学报, 2019, 29(3): 467-473.
|
/
〈 |
|
〉 |