Dimensional stabilization of 55%SiCp/Al composites

Yan CUI, Pengwei LI, Shuo LI, Leigang CAO, Yue YANG, Yuan LIU

PDF(6553 KB)
PDF(6553 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (4) : 169-177. DOI: 10.11868/j.issn.1001-4381.2022.001066
RESEARCH ARTICLE

Dimensional stabilization of 55%SiCp/Al composites

Author information +
History +

Abstract

High volume fraction SiCp/Al composites characterized by high modulus and low expansion have great application potential in the field of aerospace precision instruments. In this application scenario, it is necessary to deepen the study of the dimensional stability of the materials and further improve the precision stability of components. Three kinds of SiC particle-reinforced high volume (55%) aluminum matrix composites with the average particle size (D 50) of 14, 76 μm, and gradation of 14 μm and 76 μm are treated with different dimensional stabilization treatments, such as the solid solution aging, the thermal-cold cycling treatment with different temperature parameters after the solid solution, the thermal-cold cycling treatment, etc. After the treatment, the dimensional stability of the samples is tested with the control samples for five times at a low temperature of 180 ℃ thermal loading environment. The results show that compared with the 14 μm particle-reinforced samples, the 76 μm particle-reinforced samples and the gradation of 14 μm and 76 μm particle-reinforced samples show better dimensional stability, the size change rate (dV/V) of the control samples can be stabilized at about 1×10-3. Among the five dimensional stabilization treatment regimes, the effect of -196-191 ℃ (4 times) thermal-cold cycling treatment after the solid solution is the most significant, the size change rate (dV/V) of the samples after this treatment can be stabilized at 10-4 orders of magnitude. According to the comparison of X-ray diffraction patterns, the thermal-cold cycling treatment after the solid solution can promote the precipitation of the strengthening phase of Al2Cu significantly.

Key words

SiCp/Al composites / dimensional stability / thermal-cold cycling treatment / strengthening phase

Cite this article

Download Citations
Yan CUI , Pengwei LI , Shuo LI , et al . Dimensional stabilization of 55%SiCp/Al composites. Journal of Materials Engineering. 2025, 53(4): 169-177 https://doi.org/10.11868/j.issn.1001-4381.2022.001066

References

[1]
王燕, 朱晓林, 朱宇宏, 等. 金属基复合材料概述[J]. 中国标准化2013(5): 33-37.
WANG Y ZHU X L ZHU Y H, et al. A review on metal matrix composites[J]. China Standardization2013(5): 33-37.
[2]
李滋阳, 王思佳, 邓文举. 陶瓷颗粒增强金属基复合材料研究进展[J]. 轻工科技202137(4): 41-44.
LI Z Y WANG S J DENG W J. Research progress of ceramic particle reinforced metal matrix composites[J]. Light Industry Science and Technology202137(4): 41-44.
[3]
李建宇, 吕书林, 吴树森, 等. 超声振动对纳米SiCp/Al-5Cu复合材料组织与性能的影响[J]. 航空材料学报201838(4): 93-100.
LI J Y LYU S L WU S S, et al. Effect of ultrasonic vibration on microstructure and mechanical properties of nano-SiCp/Al-5Cu composites[J]. Journal of Aeronautical Materials201838(4): 93-100.
[4]
THOMPSON R. Aluminium matrix composites: a sustainable solution[J]. Reinforced Plastics202165(): 22-25.
摘要
Suppl 1
[5]
崔岩, 廖家杰, 曹雷刚, 等. 中高体积分数SiCp/Al复合材料的力学性能及强化机制[J]. 材料工程202452(4): 110-119.
CUI Y LIAO J J CAO L G, et al. Mechanical properties and strengthening mechanism of medium and high volume fraction SiCp/Al composites[J]. Journal of Materials Engineering202452(4): 110-119.
[6]
武高辉, 姜龙涛, 陈国钦, 等. 仪表级复合材料在惯性仪表中的应用进展[J]. 导航定位与授时20141(1): 63-68.
WU G H JIANG L T CHEN G Q, et al. Application progress of instrument grade Al matrix composites in inertial instruments[J]. Navigation Positioning & Timing20141(1): 63-68.
[7]
崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程2002(6): 3-6.
CUI Y. Aerospace applications of silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering2002(6): 3-6.
[8]
程思扬, 曹琪, 包建勋, 等. 中高体积分数SiCp/Al复合材料研究进展[J]. 中国光学201912(5): 1064-1075.
CHENG S Y CAO Q BAO J X, et al. Research and development of medium/high volume fraction SiCp/Al composites[J]. Chinese Optics201912(5): 1064-1075.
[9]
康靖, 阎峰云, 陈体军, 等. SiC体积分数和热处理对SiC/2024Al复合材料性能的影响[J]. 热加工工艺202049(12): 74-77.
KANG J YAN F Y CHEN T J, et al. Effects of SiC volume fraction and heat treatment on properties of SiC/2024Al composites[J]. Hot Working Technology202049(12): 74-77.
[10]
聂俊辉, 樊建中, 魏少华, 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用[J]. 航空制造技术2017(16): 26-36.
NIE J H FAN J Z WEI S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation[J]. Aeronautical Manufacturing Technology2017(16): 26-36.
[11]
包建勋. 高体分SiC/Al与若干电子封装基板材料的对比[J]. 电子测试2015(19): 121-122.
BAO J X. Comparison of high volume fraction SiC/Al and a number of substrate materials for electronic packaging[J]. Electronic Test2015(19): 121-122.
[12]
崔岩, 董和谦, 曹雷刚, 等. 55%SiCp/2024Al复合材料时效过程的微观组织与力学性能[J]. 金属热处理202247(1): 142-148.
CUI Y DONG H Q CAO L G, et al. Microstructure and mechanical properties of 55%SiCp/2024Al composite during aging process[J]. Heat Treatment of Metals202247(1): 142-148.
[13]
王韬. 高体分SiCp/Al基复合材料的粉末冶金法制备及其性能研究[D]. 西安:西安理工大学, 2018.
WANG T. Preparation and properties of SiCp/Al composites with high volume fraction by powder metallurgy method[D]. Xi’an: Xi’an University of Technology, 2018.
[14]
董翠鸽, 王日初, 彭超群, 等. SiCp/Al复合材料研究进展[J]. 中国有色金属学报202131(11): 3161-3181.
DONG C G WANG R C PENG C Q, et al. Research progress in SiCp/Al composites[J]. The Chinese Journal of Nonferrous Metals202131(11): 3161-3181.
[15]
武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报201955(1): 33-44.
WU G H QIAO J JIANG L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites[J]. Acta Metallurgica Sinica201955(1): 33-44.
[16]
LLOYD D J. Particle reinforced aluminum and magnesium matrix composites[J]. International Materials Reviews199439(1): 1-23.
[17]
王秀芳, 武高辉, 姜龙涛, 等. 冷热循环处理对SiCp/2024Al尺寸稳定性的影响[J]. 材料热处理学报200627(1): 23-27.
WANG X F WU G H JIANG L T, et al. Effect of thermal-cold cycling treatment on dimensional stability of SiCp/2024Al composite[J]. Transactions of Materials and Heat Treatment200627(1): 23-27.
[18]
顾开选, 王凯凯, 郭嘉, 等. 采用圆环三角试样评价材料的尺寸稳定性[J]. 理化检验(物理分册)202157(6): 21-26.
GU K X WANG K K GUO J, et al. Evaluation of dimensional stability of materials by ring triangular specimen[J]. Physical Testing and Chemical Analysis Part A: Physical Testing202157(6): 21-26.
[19]
武高辉, 修子扬, 孙东立, 等. SiCp/2024Al复合材料尺寸稳定化处理工艺研究[J]. 材料科学与工艺200917(6): 879-881.
WU G H XIU Z Y SUN D L, et al. Effect of different dimensional stability treatments on microstructure and mechanical properties of SiCp/2024Al composite[J]. Materials Science and Technology200917(6): 879-881.
[20]
石悦. 2024铝合金变形及热处理过程中组织演变及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
SHI Y. Research on microstructure evolution and properties for 2024 aluminium alloy during thermomechanical treatment[D]. Harbin: Harbin Institute of Technology, 2013.
[21]
吕可欣. 2xxx系铝合金主要强化相的微观结构研究[D]. 上海: 上海交通大学, 2019.
LYU K X. Study on microstructure of main strengthening phases of 2xxx aluminum alloy[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[22]
孙丽, 牛凤姣, 伍翠兰, 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程201948(9): 2944-2950.
SUN L NIU F J WU C L, et al. The influence of precipitation microstructure change on the stress corrosion behavior of AA2024 aluminum alloy[J]. Rare Metal Materials and Engineering201948(9): 2944-2950.
[23]
宋宇峰, 肖来荣, 丁学锋, 等. 残余应力和第二相对Al-Cu-Mg合金微尺寸变化的影响[J]. 中国有色金属学报201929(3): 467-473.
SONG Y F XIAO L R DING X F, et al. Effect of residual stress and second phases on dimensional change of Al-Cu-Mg alloy[J]. The Chinese Journal of Nonferrous Metals201929(3): 467-473.

Comments

PDF(6553 KB)

Accesses

Citation

Detail

Sections
Recommended

/