High temperature oxidation behavior of TiC ceramics by hot-pressed sintering

Fengminyu XIE, Jian YIN, Xiang XIONG, Shuai WANG, Lei TANG, Hongbo ZHANG

PDF(7660 KB)
PDF(7660 KB)
Journal of Materials Engineering ›› 2025, Vol. 53 ›› Issue (3) : 143-152. DOI: 10.11868/j.issn.1001-4381.2022.001036
RESEARCH ARTICLE

High temperature oxidation behavior of TiC ceramics by hot-pressed sintering

Author information +
History +

Abstract

The long-term oxidation resistance of TiC ceramics is a key parameter for their application in aerospace industries and must be carefully evaluated at high temperatures and various airflow environments. TiC single-phase ceramics are prepared by hot-pressed sintering. The non-isothermal oxidation properties of TiC ceramics from room temperature to 1500 ℃ are analyzed by thermogravimetry-differential scanning calorimeter (TG-DSC) thermal analyzer. The isothermal oxidation properties of TiC ceramics in different environments (temperature: 1000,1200,1500 ℃, atmosphere: static air, one-way air flow, low oxygen partial pressure air flow) are analyzed by a tubular oxidation furnace, and its oxidation rate is characterized by monitoring the change in mass per unit area. The results show that the diffusion activation energy of TiC ceramics at 1200-1500 ℃ is about 378.78 kJ/mol, and the reaction activation energy is about 17.82 kJ/mol. TiC ceramics have a three-layer structure of TiO2 oxide layer, TiC x O y interlayer and TiC substrate after oxidation. The results of oxidation kinetics indicate that the oxidation rate is controlled by reaction rate at 1200 ℃, and is controlled by oxygen diffusion at 1500 ℃. At 1000 ℃, the oxidation rate in the initial stage (the first 100 min) is controlled by diffusion, then by reaction. In the low oxygen partial pressure air flow environment, the reaction rate and diffusion rate of high-temperature molecular oxygen oxidation of TiC ceramics are both inhibited, and a relatively dense TiO2 oxide layer can be formed.

Key words

TiC ceramic / hot-pressed sintering / non-isothermal oxidation / isothermal oxidation / low oxygen partial pressure

Cite this article

Download Citations
Fengminyu XIE , Jian YIN , Xiang XIONG , et al . High temperature oxidation behavior of TiC ceramics by hot-pressed sintering. Journal of Materials Engineering. 2025, 53(3): 143-152 https://doi.org/10.11868/j.issn.1001-4381.2022.001036

References

[1]
FAHRENHOLTZ W G HILMAS G E. Ultra-high temperature ceramics: materials for extreme environments[J]. Scripta Materialia2017129: 94-99.
[2]
陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷201738(5): 311-390.
CHEN Y F HONG C Q HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics201738(5): 311-390.
[3]
马浩林, 吴晓晨, 甄霞丽, 等. SiCf/SiC陶瓷基复合材料增韧机理及界面相微区性能测试方法研究进展[J]. 航空材料学报202444(5): 174-186.
MA H L WU X C ZHEN X L, et al. Research progress on toughening mechanism and interphase property testing methods of SiCf/SiC ceramic matrix composites[J]. Journal of Aeronautical Materials202444(5): 174-186.
[4]
LUN H L YUAN J H ZENG Y, et al. Mechanisms responsible for enhancing low-temperature oxidation resistance of nonstoichiometric (Zr,Ti)C[J]. Journal of the American Ceramic Society2022105(8): 5309-5324.
[5]
苏超群, 邓龙辉, 刘若愚, 等. 碳化硅陶瓷基复合材料表面环境障涂层结合强度[J]. 材料工程202452(2): 198-206.
SU C Q DENG L H LIU R Y, et al. Bonding strength of environmental barrier coatings on surface of SiC-based ceramic matrix composites[J]. Journal of Materials Engineering202452(2): 198-206.
[6]
LAVRENKO V A GLEBOV L A POMITKIN A P, et al. High-temperature oxidation of titanium carbide in oxygen[J]. Oxidation of Metals19759(2): 171-179.
[7]
SHIMADA S KOZEKI M. Oxidation of TiC at low temperatures[J]. Journal of Materials Science199227(7): 1869-1875.
[8]
SHIMADA S MOCHIDSUKI K. The oxidation of TiC in dry oxygen, wet oxygen, and water vapor[J]. Journal of Materials Science200439(2): 581-586.
[9]
SHABALIN I L VISHNYAKOV V M BULL D J, et al. Initial stages of oxidation of near-stoichiometric titanium carbide at low oxygen pressures[J]. Journal of Alloys and Compounds2009472(1/2): 373-377.
[10]
BAILLET J GAVARINI S MILLARD-PINARD N, et al. Influence of grain size and microstructure on oxidation rate and mechanism in sintered titanium carbide under high temperature and low oxygen partial pressure[J]. Journal of the European Ceramic Society201636(13): 3099-3111.
[11]
任至, 丰平, 余海洲, 等. 碳氮比对Ti(C,N)粉末抗氧化性的影响[J]. 硬质合金202138(1): 9-15.
REN Z FENG P YU H Z, et al. The effect of carbon to nitrogen ratio on oxidation resistance of Ti(C,N) powder[J]. Cemented Carbides202138(1): 9-15.
[12]
边媛媛, 朱丽慧, 司婷婷. TiC0.91N0 . 09涂层和TiC0.77N 0.23涂层高温抗氧化性能的研究[J].表面技术,2023, 52(5):197-207.
BIAN Y Y ZHU L H SI T T. High-temperature oxidation resistance behavior of TiC0.91N0.09 and TiC0.77N0.23 coating[J]. Surface Technology202352(5):197-207.
[13]
LI Y DUAN Y R LI W H. Study on nanophase anatase-rutile transition with Raman spectrum[J]. Spectroscopy and Spectral Analysis200222(5): 783-786.
[14]
LUN H, ZENG Y XIONG X, et al. Oxidation behavior of non-stoichiometric (Zr,Hf,Ti)C x carbide solid solution powders in air[J]. Journal of Advanced Ceramics202110(4): 741-757.
[15]
RAO G A R VENUGOPAL V. Kinetics and mechanism of the oxidation of ZrC[J]. Journal of Alloys and Compounds1994206(2): 237-242.
[16]
BIEDUNKIEWICZ A STRZELCZAK A MOZDZEN G, et al. Non-isothermal oxidation of ceramic nanocomposites using the example of Ti-Si-C-N powder: kinetic analysis method[J]. Acta Materialia200856(13): 3132-3145.
[17]
赖志云,高洁,吴康军. 光性矿物学简明教程(石油高等院校特色教材)[M]. 北京:石油工业出版社, 2013.
LAI Z Y GAO J WU K J. A concise course of photomineralogy (featured textbook for petroleum universities)[M]. Beijing: Petroleum Industry Press, 2013.
[18]
KANE K A PINT B A MITCHELL D, et al. Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications[J]. Journal of the European Ceramic Society202141(13): 6130-6150.

Comments

PDF(7660 KB)

Accesses

Citation

Detail

Sections
Recommended

/