ZIF-8衍生高效Fe-N-C催化剂的制备及其氧还原性能

张赛航, 姚赢赢, 李钊, 邹建新

PDF(3938 KB)
PDF(3938 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 135-142. DOI: 10.11868/j.issn.1001-4381.2023.000207
研究论文

ZIF-8衍生高效Fe-N-C催化剂的制备及其氧还原性能

作者信息 +

Synthesis of ZIF-8 derived high-efficiency Fe-N-C catalyst and its oxygen reduction reaction performance

Author information +
History +

摘要

为推动燃料电池的大规模商业化应用,开发高效、稳定和低成本的氧还原(ORR)催化剂具有重要意义。本工作以Fe掺杂ZIF-8为前驱体,通过球磨、高温氩气气氛下煅烧、酸洗后,在氨气气氛下进行二次煅烧,得到Fe-N-C非贵金属催化剂,多种表征手段的结果显示Fe原子均匀分散在氮掺杂的碳骨架上,从而形成丰富的Fe-N x 催化活性位点。电化学性能测试结果表明,通过制备工艺和金属比例优化后的Fe-N-C-5%催化剂,在0.1 mol/L HClO4的酸性溶液中表现出优异的ORR活性,半波电位为0.845 V,同时兼具良好的稳定性,在20000次循环后半波电位没有明显下降,这些结果为合理设计非贵金属ORR催化剂提供了有效的策略。

Abstract

To promote the large-scale commercial application of fuel cells, efficient, stable, and low-cost oxygen reduction reaction (ORR) catalysts should be developed. In this study, a Fe-doped ZIF-8 is used as the precursor, and the Fe-N-C non-precious metal catalyst is obtained by ball milling, calcination under a high-temperature argon atmosphere, pickling, and secondary calcination under an ammonia atmosphere. The results of various characterization methods show that Fe atoms are uniformly dispersed on the nitrogen-doped carbon framework, thus forming abundant Fe-N x active sites. The electrochemical performance test results show that the Fe-N-C-5% catalyst with optimized preparation process and metal contents exhibits excellent ORR activity in 0.1 mol/L HClO4 acidic solution, with a half-wave potential of 0.845 V. Meantime, it has good stability, and the half-wave potential does not drop significantly after 20000 cycles. These results provide an effective strategy for the rational design of precious metal-free ORR catalysts in the future.

关键词

氧还原反应 / 非贵金属催化剂 / 质子交换膜燃料电池 / 电催化 / 金属有机框架材料

Key words

oxygen reduction reaction / non-precious metal catalyst / proton exchange membrane fuel cell / electrocatalysis / metal-organic framework

中图分类号

TB34 / TQ426

引用本文

导出引用
张赛航 , 姚赢赢 , 李钊 , . ZIF-8衍生高效Fe-N-C催化剂的制备及其氧还原性能. 材料工程. 2025, 53(3): 135-142 https://doi.org/10.11868/j.issn.1001-4381.2023.000207
Saihang ZHANG, Yingying YAO, Zhao LI, et al. Synthesis of ZIF-8 derived high-efficiency Fe-N-C catalyst and its oxygen reduction reaction performance[J]. Journal of Materials Engineering. 2025, 53(3): 135-142 https://doi.org/10.11868/j.issn.1001-4381.2023.000207

参考文献

[1]
孙鹏, 李忠芳, 王传刚,等. 燃料电池用高温质子交换膜的研究进展 [J]. 材料工程202149(1): 23-34.
SUN P LI Z F WANG C G, et al. Research progress of high temperature proton exchange membranes applied in fuel cells [J]. Journal of Materials Engineering202149(1): 23-34.
[2]
GASTEIGER H A MARKOVIĆ N M. Just a dream-or future reality? [J]. Science2009324: 48-49.
[3]
WANG X X SWIHART M T WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation [J]. Nature Catalysis20192: 578-589.
[4]
SHAO Y DODELET J P WU G, et al. PGM-free cathode catalysts for pem fuel cells: a mini-review on stability challenges [J]. Advanced Materials201931: 1807615.
[5]
杜真真, 王珺, 王晶,等. 质子交换膜燃料电池关键材料的研究进展 [J]. 材料工程202250(12): 35-50.
DU Z Z WANG J WANG J, et al. Research progress of key materials in proton exchange membrane fuel cell [J]. Journal of Materials Engineering202250(12): 35-50.
[6]
YAN X LIU K WANG T, et al. Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction [J]. Journal of Materials Chemistry A20175: 3336-3345.
[7]
CHONG L WEN J G KUBAL J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks [J]. Science2018362: 1276-1281.
[8]
XIAO F WANG Q XU G L, et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells [J]. Nature Catalysis20225: 503-512.
[9]
李茂辉, 杨智, 潘廷仙,等. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性 [J]. 材料工程202250(4): 132-138.
LI M H YANG Z PAN T X, et al. Enhanced stability for oxygen reduction reaction of supported platinum-based catalyst with Fe-N doped activated carbon as carbon support [J]. Journal of Materials Engineering202250(4): 132-138.
[10]
AKINPELU A MERZOUGUI B BUKOLA S, et al. A Pt-free electrocatalyst based on pyrolized vinazene-carbon composite for oxygen reduction reaction [J]. Electrochimica Acta2015161: 305-311.
[11]
WU G MORE K L JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science2011332: 443-447.
[12]
YIN P YAO T WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts [J]. Angewandte Chemie International Edition201655: 10800-10805.
[13]
ZHANG H OSGOOD H XIE X, et al. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks [J]. Nano Energy201731: 331-350.
[14]
GAO L XIAO M JIN Z, et al. Correlating Fe source with Fe-N-C active site construction: guidance for rational design of high-performance ORR catalyst [J]. Journal of Energy Chemistry201827: 1668-1673.
[15]
WANG X ZHANG H LIN H, et al. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid [J]. Nano Energy201625: 110-119.
[16]
GAUTAM J THANH T D MAITI K, et al. Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction [J]. Carbon2018137: 358-367.
[17]
PAN Y SUN K LIU S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting [J]. Journal of the American Chemical Society2018140: 2610-2618.
[18]
GUO D SHIBUYA R AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J]. Science2016351: 361-365.
[19]
PENG H L MO Z Y LIAO S J, et al. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction [J]. Scientific Reports20133: 1765.
[20]
SONG P ZHANG Y PAN J, et al. Cheap carbon black-based high-performance electrocatalysts for oxygen reduction reaction [J]. Chemical Communications201551: 1972-1975.
[21]
ZHU H SUN Z CHEN N, et al. A non-precious-metal catalyst derived from a Cp2-Co+-PBI composite for cathodic oxygen reduction under both acidic and alkaline conditions [J]. ChemElectroChem20174: 1117-1123.
[22]
XIAO F XU G L SUN C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction [J].Nano Energy201961: 60-68.
[23]
ZHANG B WANG L CAO Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics [J]. Nature Catalysis20203: 985-992.
[24]
XIAO M ZHU J MA L, et al. microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy [J]. ACS Catalysis20188: 2824-2832.
[25]
HE Y GUO H HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells [J]. Advanced Materials202032: 2003577.
[26]
XIE X HE C LI B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells [J]. Nature Catalysis20203: 1044-1054.
[27]
WANG J HUANG Z LIU W, et al. Design of N-coordinated dual-metal sites: a stable and active pt-free catalyst for acidic oxygen reduction reaction [J]. Journal of the American Chemical Society2017139: 17281-17284.
[28]
YIN S H YANG J HAN Y, et al. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction [J]. Angewandte Chemie International Edition202059: 21976-21979.
[29]
ZHAO C YU M YANG Z, et al. Oxygen reduction reaction catalytic activity enhancement over mullite SmMn2O5 via interfacing with perovskite oxides [J]. Nano Energy201851: 91-101.
[30]
LIANG Y LI Y WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction [J]. Nature Materials201110: 780-786.

基金

国家重点研发计划项目(2022YFB3803700)
国家自然科学基金项目(52171186)

评论

PDF(3938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/