面向全钒液流电池用磺化支化聚苯并咪唑膜的构筑

李慧婷, 刘希阳, 龙俊, 黄文恒, 李劲超, 陈良, 陈锓, 张亚萍

PDF(4284 KB)
PDF(4284 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 201-211. DOI: 10.11868/j.issn.1001-4381.2025.000095
研究论文

面向全钒液流电池用磺化支化聚苯并咪唑膜的构筑

作者信息 +

Construction of sulfonated branched polybenzimidazole membranes for application in all-vanadium flow battery

Author information +
History +

摘要

面向全钒液流电池(VFB)应用,通过将合成的支化聚苯并咪唑与1,4-丁基磺酸内酯反应,制备了理论磺化度分别为30%、40%、50%和60%的磺化支化聚苯并咪唑(sb-PBI)膜。其中,sb-PBI-50膜展现出优异的钒离子阻力(9.34×10-9 cm2/min)、质子传导能力(2.05×10-2 S/cm)和选择性(2.20×106 S·min/cm3)。将sb-PBI-50膜装配到VFB中,在80~280 mA/cm2电流密度下,其库仑效率(96.26%~98.35%)、电压效率(73.50%~90.19%)和能量效率(71.72%~86.82%)均高于商用Nafion 212膜。此外,在140 mA/cm2电流密度下,使用sb-PBI-50膜的VFB可稳定进行1170次充放电循环,且保持化学结构和微观形貌稳定,说明sb-PBI-50膜在VFB中具有好的应用潜力。

Abstract

The sulfonated branched polybenzimidazole (sb-PBI) membranes with theoretical sulfonation degrees of 30%,40%,50%,and 60% are prepared by reacting between synthesized branched polybenzimidazole and 1,4-butane sultone for application in all-vanadium flow battery (VFB). Among them,the sb-PBI-50 membrane shows excellent vanadium ion resistance (9.34×10-9 cm2/min),proton conductivity (2.05×10-2 S/cm),and selectivity (2.20×106 S·min/cm3). The coulomb efficiencies (96.26%-98.35%),voltage efficiencies (73.50%-90.19%),and energy efficiencies (71.72%-86.82%) of VFB with sb-PBI-50 membrane are higher than those of commercial Nafion 212 membrane under the current density of 80-280 mA/cm2. In addition,the VFB assembled with sb-PBI-50 membrane can stably carry out 1170 charge-discharge cycles at 140 mA/cm2. The chemical structure and micro-morphologies can remain stable after long-term cycles,indicating that the sb-PBI-50 membrane has good application potential in VFB.

关键词

/ 磺化支化聚苯并咪唑 / 质子传导率和选择性 / 全钒液流电池

Key words

membrane / sulfonated branched polybenzimidazole / proton conductivity and selectivity / all-vanadium flow battery

中图分类号

TB34

引用本文

导出引用
李慧婷 , 刘希阳 , 龙俊 , . 面向全钒液流电池用磺化支化聚苯并咪唑膜的构筑. 材料工程. 2025, 53(7): 201-211 https://doi.org/10.11868/j.issn.1001-4381.2025.000095
Huiting LI, Xiyang LIU, Jun LONG, et al. Construction of sulfonated branched polybenzimidazole membranes for application in all-vanadium flow battery[J]. Journal of Materials Engineering. 2025, 53(7): 201-211 https://doi.org/10.11868/j.issn.1001-4381.2025.000095

参考文献

[1]
陈妍. 以新型能源体系建设推动经济社会全面绿色转型的路径[J]. 全球化20246:73-80.
CHEN Y. The key path to promote the green transformation of the economy and society through the construction of a new energy system[J]. Globalization20246: 73-80.
[2]
LV Y F GENG X W LUO W M, et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety[J]. Journal of Energy Storage202372: 108389.
[3]
魏甲明,陈宋璇,付云枫,等. 全产业链贯通布局下钒液流电池长时储能发展思考[J]. 中国有色冶金202453(3):7-18.
WEI J M CHEN S X FU Y F, et al. Strategic considerations for the development of vanadium redox flow batteries for long-duration energy storage within a fully integrated industry chain[J]. China Nonferrous Metallurgy202453(3): 7-18.
[4]
ZHAO N N PLATT A RILEY H, et al. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries[J]. Journal of Energy Storage202372, 108321.
[5]
MYURES X M SURESH S ARTHANAREESWARAN G. Construction of thermal, chemical and mechanically stable ion exchange membranes with improved ion selectivity for vanadium redox flow batteries applications[J]. Journal of Power Sources2024591: 233818.
[6]
IKHSAN M M ABBAS S DO X H, et al. Polybenzimidazole membranes for vanadium redox flow batteries: effect of sulfuric acid doping conditions[J]. Chemical Engineering Journal2022435: 134902.
[7]
GENG K LI Y XING Y, et al. A novel polybenzimidazole membrane containing bulky naphthalene group for vanadium flow battery[J]. Journal of Membrane Science2019586: 231-239.
[8]
MAURYA S ABAD S D PARK E J, et al. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries[J]. Journal of Membrane Science2023668: 121233.
[9]
SU Y K LIU S Q SHAO B, et al. Building water molecule chains in polybenzimidazole membrane toward superior vanadium redox flow battery[J]. Chemical Engineering Journal2024485: 149838.
[10]
CUI Y H WANG S WANG D, et al. HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid[J]. Journal of Membrane Science2021637: 119610.
[11]
MATSUMOTO K HIGASHIHARA T UEDA M. Star-shaped sulfonated block copoly(ether ketone)s as proton exchange membranes[J]. Macromolecules200841: 7560-7565.
[12]
MOU Z H YAN R X PENG J, et al. Synthesis of polyzwitterionic carbon dots with superior friction and fatigue control behaviors under water lubrication[J]. Chemical Engineering Journal2023465: 142986.
[13]
LI S ZHU X L LIU D Z, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. Journal of Membrane Science2018546: 15-21.
[14]
XU J F ZHAO H LI W H, et al. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries[J]. Chemical Engineering Journal2022433: 133197.
[15]
KICINSKI W DZIURA A. Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: sulfur-doped carbon xerogels[J]. Carbon201475: 56-67.
[16]
CHEN D Y HICKNER M A. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries[J]. Physical Chemistry Chemical Physics201315: 11299-11305.
[17]
WANG L YU L H MU D, et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries[J]. Journal of Membrane Science2018552: 167-176.
[18]
XI J Y LI Z H YU L H, et al. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery[J]. Journal of Power Sources2015285: 195-204.
[19]
LIANG D WANG S MA W J, et al. A low vanadium permeability sulfonated polybenzimidazole membrane with a metal-organic framework for vanadium redox flow batteries[J]. Electrochimica Acta2022405: 139795.
[20]
SHI B B PANG X LI S N, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity[J]. Nature Communications202213: 6666.
[21]
PANG B WU X M GUO Y S, et al. Anionic conductive group tunable amphoteric polybenzimidazole ion conductive membrane for vanadium redox flow battery[J]. Journal of Membrane Science2023670: 121351.
[22]
DING L M SONG X P WANG L H, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science2019578: 126-135.
[23]
REN X R ZHAO L N CHE X F, et al. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications[J]. Journal of Power Sources2020457: 228037.
[24]
WAN Y H SUN J JIANG H R, et al. A highly-efficient composite polybenzimidazole membrane for vanadium redox flow battery[J]. Journal of Power Sources2021489: 229502.
[25]
DING L M WANG L H. Preparation of novel structure polybenzimidazole with thiophene ring for high performance proton conducting membrane in vanadium flow battery[J]. Journal of Power Sources2023564: 232858.
[26]
CHE X F ZHAO H REN X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science2020611: 118359.
[27]
PANG B ZHANG Q YAN X M, et al. Superior acidic sulfate ester group based high conductive membrane for vanadium redox flow battery[J]. Journal of Power Sources2021506: 230203.
[28]
XIA Z J YING L B FANG J H, et al. Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications[J]. Journal of Membrane Science2017525: 229-239.
[29]
ZHAO Y Y LI M R YUAN Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials201626: 210-218.

基金

国家自然科学基金(22478321)
四川省科技计划项目(2024NSFJQ0063)
中国科学技术大学-西南科技大学对口合作发展联合基金(24ZXLHJJ02)
西南科技大学研究生创新基金(24ycx1071)

评论

PDF(4284 KB)

Accesses

Citation

Detail

段落导航
相关文章

/