Hf含量对NiCoCrAlY黏结层合金相组成及高温氧化性能影响

薛瑞, 张婧, 辛文彬, 宋希文, 常振东, 牟仁德, 蔡妍

PDF(11610 KB)
PDF(11610 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 24-34. DOI: 10.11868/j.issn.1001-4381.2025.000040
航空发动机及燃气轮机涡轮叶片修复技术专栏

Hf含量对NiCoCrAlY黏结层合金相组成及高温氧化性能影响

作者信息 +

Effect of Hf content on phase composition and high-temperature oxidation of NiCoCrAlY alloy

Author information +
History +

摘要

相组成和结构对于黏结层合金的抗高温氧化性能起着重要作用,而合金的抗高温氧化性能又直接影响其制备的热障涂层的服役性能与工作寿命。采用Thermo-Calc热力学计算、X射线衍射仪、场发射扫描电镜等分析手段研究不同Hf含量对NiCoCrAlY黏结层合金相组成和结构、1150 ℃等温氧化过程及Hf等元素分布特征的影响。热力学理论计算及室温组织观察结果表明,含0.5%(质量分数,下同)和1%Hf的黏结层合金相组成均以FCC_L12结构的γ'-Ni3Al相与BCC_B2结构的β-NiAl相为主。Hf含量由0.5%增加到1%后,合金的液相线温度由1422 ℃降低为1418 ℃,固相线温度从1297 ℃降低至1287 ℃,凝固区间温度增加,α-Cr相析出温度由860 ℃提高到880 ℃,1000~1250 ℃温度范围内含0.5%Hf的黏结合金β-NiAl相含量高于1.0%Hf。不同Hf含量黏结层合金200 h等温氧化分析结果表明,氧化增重量与氧化时间曲线均符合典型抛物线氧化动力学规律。随着合金中Hf含量由0.5%增加到1.0%,合金的平均氧化速率由(0.15±0.008) g·m-2·h-1增加到(0.32±0.006) g·m-2·h-1,拟合的抛物线氧化速率常数k p则由4.163 g2∙m-4∙h-1增加到9.337 g2·m-4·h-1。氧化物相及形貌分析表明:氧化后合金表面主要由致密的Al2O3组成;由合金截面观察到深灰色衬度的Al2O3膜,氧化膜中还分布着白色衬度的HfO2相,且随着Hf含量上升,氧化膜中分布着的HfO2由不连续的点状分布转变为长条形的连续分布,内氧化的HfO2颗粒数量与面积增加,贫Al层的厚度也大大提升。

Abstract

The phase composition and structure play an important role in the high-temperature oxidation resistance of the bonding layer alloy. Furthermore, the high-temperature oxidation resistance of the alloy strongly affects the working life of the thermal barrier coating prepared. In this paper, the effects of different Hf contents on the phase composition, structure, and isothermal oxidation process at 1150 ℃ are investigated by Thermo-Calc, X ray diffraction, and field emission scanning electron microscopy. The results of theoretical calculations and microstructure observations indicate that the phase composition of NiCoCrAlY alloy containing 0.5% (mass fraction, the same below) and 1%Hf are mainly composed of the γ'-Ni3Al phase and the β-NiAl phase. As the Hf content increases from 0.5% to 1%, the liquidus temperature of the alloys decreases from 1422 ℃ to 1418 ℃, the solidus temperature decreases from 1297 ℃ to 1287 ℃, and the solidification temperature range increases. Furthermore, the precipitation temperature of the α-Cr phase increases from 860 ℃ to 880 ℃ with increasing Hf content. The β-NiAl phase content of the bonding alloy with 0.5%Hf in the temperature range of 1000-1250 ℃ is higher than that of the alloy with 1.0%Hf. The isothermal oxidation analysis for 200 h shows that the mass gain versus oxidation time curves follow the typical parabolic oxidation kinetics. As the Hf content increases from 0.5% to 1.0% in alloys, the average oxidation rate increases from (0.15±0.008) g·m-2·h-1 to (0.32±0.006) g·m-2·h-1, and the parabolic oxidation rate constant k p increases from 4.163 g2∙m-4∙h-1 to 9.337 g2∙m-4∙h-1. According to the phase analysis and morphology observation of the oxide layer, it is found that the oxide layer is mainly a dense Al2O3 layer; the white contrast HfO2 phase is also distributed in the oxide film. With the increase of Hf content, the distribution of the HfO2 phase in the oxide layer changes from discontinuity to continuousness, and the number and area of HfO2 particles increase. Meanwhile, the internal oxidation degree is aggravated and the thickness of the lean Al layer is improved.

关键词

黏结层 / 高温氧化 / Hf改性 / 相组成 / NiCoCrAlY合金

Key words

bond coat / high temperature oxidation / Hf modification / phase composition / NiCoCrAlY alloy

中图分类号

TG146.4 / TB31

引用本文

导出引用
薛瑞 , 张婧 , 辛文彬 , . Hf含量对NiCoCrAlY黏结层合金相组成及高温氧化性能影响. 材料工程. 2025, 53(6): 24-34 https://doi.org/10.11868/j.issn.1001-4381.2025.000040
Rui XUE, Jing ZHANG, Wenbin XIN, et al. Effect of Hf content on phase composition and high-temperature oxidation of NiCoCrAlY alloy[J]. Journal of Materials Engineering. 2025, 53(6): 24-34 https://doi.org/10.11868/j.issn.1001-4381.2025.000040

参考文献

[1]
张晗,刘轩溱,黄爱辉,等. 热障涂层金属黏结层制备与研究进展[J]. 中国腐蚀与防护学报202545(1): 20-32.
ZHANG H LIU X Z HUANG A H, et al. Manufacturing and research progress in metallic bond coats for thermal barrier coatings[J]. Journal of Chinese Society for Corrosion and Protection202545(1):20-32.
[2]
NAUMENKO D SHEMET V SINGHEISER L, et al. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide[J]. Journal of Materials Science200944(7): 1687-1703.
[3]
李文权,周红霞,苏浩然,等. 热障涂层的抗CMAS腐蚀研究进展[J]. 材料导报202337(): 147-154.
摘要
增刊2
LI W Q ZHOU H X SU H R, et al. Progress of research on CMAS corrosion resistance of thermal barrier coatings[J]. Materials Reports202337():147-154.
Suppl 2
[4]
钱余海,李美栓,张亚明. 氧化膜开裂和剥落行为[J]. 腐蚀科学与防护技术200315(2): 90-93.
QIAN Y H LI M S ZHANG Y M. Cracking and spalling behavior of thin oxide scale[J]. Corrosion Science and Protection Technology200315(2):90-93.
[5]
曹家旭. MCrAlY涂层与单晶高温合金互扩散行为研究[D]. 广州:广东工业大学, 2020.
CAO J X. Interdiffusion behavior of MCrAlY coating and single crystal superalloy[D]. Guangzhou: Guangdong University of Technology, 2020.
[6]
门引妮,李进,卢金文,等. MCrAlY涂层的研究进展[J]. 表面技术202453(7): 31-39.
MEN Y N LI J LU J W, et al. Research progress of MCrAlY coatings[J]. Surface Technology202453(7): 31-39.
[7]
任先京,张淑婷,杜开平,等. Si对MCrAlY涂层高温性能的影响[J]. 热喷涂技术20168(1): 11-16.
REN X J ZHANG S T DU K P, et al. Effect of Si on high temperature performance of MCrAlY coatings[J]. Thermal Spray Technology20168(1):11-16.
[8]
苗小锋,云海涛,郑兆然. Ta含量对MCrAlY抗氧化性的影响[J]. 热喷涂技术202012(2): 47-51.
MIAO X F YUN H T ZHENG Z R. Effect of Ta content on oxidation resistant of MCrAlY coatings[J]. Thermal Spray Technology202012(2):47-51.
[9]
刘子杰. 定向凝固DZ411镍基高温合金微观结构演化及性能研究[D]. 兰州:兰州大学, 2023.
LIU Z J. Study on microstructure evolution and properties of directionally solidified DZ411 nickel based high temperature alloy[D]. Lanzhou: Lanzhou University,2023.
[10]
彭新. Re、ReCr和PtCrRe改性NiAl涂层的制备和高温腐蚀性能研究[D]. 合肥:中国科学技术大学, 2024.
PENG X. Preparation and high temperature corrosion properties of NiAl coatings modified with Re, ReCr, and PtCrRe[D]. Hefei: University of Science and Technology of China,2024.
[11]
LIANG J J WEI H ZHU Y L, et al. Influence of Re on the properties of a NiCoCrAlY coating alloy[J]. Journal of Materials Science & Technology201127(5): 408-414.
[12]
LIANG J J WEI H ZHU Y L, et al. Phase constituents and thermal expansion behavior of a NiCrAlYRe coating alloy[J]. Journal of Materials Science201146(2): 500-508.
[13]
王晓明,韩国峰,尹轶川,等. 基于相平衡计算的Hf掺杂NiCoCrAlY高温涂层设计及强化机理[J]. 中国表面工程202235(3): 132-145.
WANG X M HAN G F YIN Y C, et al. Design and strengthening mechanism of the Hf-doped NiCoCrAlY coatings based on phase equilibrium calculation[J]. China Surface Engineering202235(3):132-145.
[14]
赵春山. 活性元素掺杂NiAl黏结层制备及抗氧化性能研究[D]. 上海:上海交通大学, 2019.
ZHAO C S. Preparation and antioxidant properties of NiAl bonding layer doped with active elements[D]. Shanghai: Shanghai Jiao Tong University,2019.
[15]
王艳丽,赵希宏,范映伟,等. Hf对IC10高温合金凝固特性的影响[J]. 航空材料学报201232(6): 50-55.
WANG Y L ZHAO H X FAN Y W, et al. The effect of Hf on the solidification characteristics of IC10 high temperature alloy[J]. Journal of Aeronautical Materials201232(6):50-55.
[16]
陈晓燕,周亦胄,张朝威,等. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响[J]. 金属学报201450(8): 1019-1024.
CHEN X Y ZHOU Y Z ZHANG C W, et al. Effect of Hf on the interfacial reaction between a nickel base superalloy and a ceramic material[J]. Acta Metallurgica Sinica201450(8):1019-1024.
[17]
CHEN X. Progressive damage and failure of thermal barrier coatings[D]. Michigan: Wayne State University, 2001.
[18]
POMEROY M J. Coatings for gas turbine materials and long term stability issues[J]. Materials & Design200526(3): 223-231.
[19]
许振华,牟仁德,曹学强,等. NiCrAlYSi涂层与镍基高温合金基体互扩散行为研究[J]. 材料工程2009(2): 67-73.
XU Z H MU R D CAO X Q, et al. Study of the interdiffusion behavior between NiCrAlYHf coating and Ni-based superalloy substrate[J]. Journal of Materials Engineering2009(2):67-73.
[20]
钟锦岩,牟仁德,何英,等. NiCoCrAlYHf涂层与一种Ni基单晶高温合金循环氧化行为研究[J]. 材料工程2013(8): 28-35.
ZHONG J Y MU R D HE Y, et al. Thermal cyclic oxidation behavior between NiCoCrAlYHf bond coat and a kind of Ni-based single crystal superalloy[J]. Journal of Materials Engineering2013(8):28-35.
[21]
陆杰. 高性能MCrAlYHf(M=Ni, Co, Fe)热障涂层黏结层材料的设计及其氧化机制研究[D]. 上海:上海交通大学, 2020.
LU J. Design and oxidation mechanism of high performance MCrAlYHf(M=Ni, Co, Fe) bond coat material for thermal barrier coating[D]. Shanghai:Shanghai Jiao Tong University,2020.
[22]
EBACH S A SCHULZ U SWADZBA R, et al. Lifetime improvement of EB-PVD 7YSZ TBCs by doping of Hf or Zr in NiCoCrAlY bond coats[J].Corrosion Science2021181: 109205.
[23]
史天杰,张鑫,彭浩然,等. 热障涂层材料体系研究现状及展望[J]. 热喷涂技术202315(2): 1-12.
SHI T J ZHANG X PENG H R, et al. Research status and prospect of thermal barrier coating materials system[J]. Thermal Spray Technology202315(2):1-12.
[24]
蔡妍,李建平,何利民,等. NiCoCrAlYHf涂层材料的1200 ℃高温氧化行为[J]. 真空201754(6): 12-16.
CAI Y LI J P HE L M, et al. 1200 ℃ oxidation behavior study of NiCoCrAlYHf coating[J]. Vacuum201754(6):12-16.

基金

国家科技重大专项项目(J2019-Ⅶ-0010-0150)
中央引导地方科技发展资金项目(2023ZY0009)
中国航发北京航空材料研究院院基金(KJ42250521)
内蒙古自治区高等学校青年科技英才支持计划(NJYT24070)
内蒙古自治区教育厅一流学科科研专项(YLXKZX-NKD-050)
内蒙古自治区直属高校基本科研业务费(118)

评论

PDF(11610 KB)

Accesses

Citation

Detail

段落导航
相关文章

/