
双丝电弧增材制造镍钛合金组织及性能研究
赵华宇, 黄健康, 向锐, 赵天翔, 徐建洲, 宋学平, 樊丁
双丝电弧增材制造镍钛合金组织及性能研究
Microstructure and properties of nickel- titanium alloy manufactured by twin- wire arc additive manufacturing
针对镍钛合金增材制造过程中微观结构和成分难以调控的问题,本研究采用双丝电弧增材制造技术,通过控制Ni丝和Ti丝的送丝速度,精确调节镍钛合金的原子比和相组成,从而获得性能优异的NiTi合金。结果表明,在纵向熔覆道中心区域,当Ni/Ti原子比为8∶10时,沉积的NiTi合金主要由Ti2Ni相组成,并伴有少量富Ti颗粒,显微硬度和抗压强度分别达到560HV和1600 MPa;当Ni/Ti原子比为11∶10时,NiTi相中夹杂有Ti2Ni相,在循环压缩过程中出现1.6%的不可恢复应变;当Ni/Ti原子比为15∶10时,NiTi相中形成团簇状Ni3Ti相,纵向断裂应变接近40%,且循环压缩后仅出现1.2%的不可恢复应变,表现出良好的超弹性。此外,与纵向熔覆道中心区域相比,不同Ni/Ti原子比试样的横向搭接区域微观组织呈现明显的晶粒粗化和成分偏析现象,其抗压强度和塑性变形能力均显著降低。
In order to obtain NiTi alloy with excellent properties, dual-wire arc additive manufacturing technology is used to control the wire feed speed of Ni and Ti wires, and precisely adjust the atomic ratio and phase composition of Ni alloy. The results show that when the Ni/Ti atomic ratio is 8∶10 in the center of the longitudinal cladding passage, the deposited NiTi alloy is mainly composed of Ti2Ni phase accompanied by a small number of Ti-rich particles, and the microhardness and compressive strength reach 560HV and 1600 MPa, respectively. When the Ni/Ti atomic ratio is 11∶10, the Ti2Ni phase is included in the NiTi phase, and the irrecoverable strain of 1.6% appears in the cyclic compression process. When the atomic ratio of Ni/Ti is 15∶10, the cluster Ni3Ti phase is formed in the NiTi phase, the longitudinal fracture strain is close to 40%, and the irrecoverable strain is only 1.2% after cyclic compression, showing good superelasticity. In addition, compared with the central region of the longitudinal cladding passage, the microstructures of the transverse lapping region of the samples with different Ni/Ti atomic ratios show obvious grain coarsening and component segregation, and the compressive strength and plastic deformation ability are significantly reduced.
双丝电弧增材制造 / NiTi合金 / 组织与性能 / 超弹性
twin-wire arc additive manufacturing / NiTi alloy / microstructure and property / superelasticity
TG444 / TB31
[1] |
|
[2] |
司冠琛, 向政, 杨琴, 等. 单胞构型和微观缺陷对SLM制备NiTi合金高刚度点阵结构疲劳性能的影响[J].激光与光电子学进展,2023,60(21):230-240.
|
[3] |
|
[4] |
|
[5] |
杨超, 廖雨欣, 卢海洲, 等. NiTi形状记忆合金的功能特性及其应用发展[J].材料工程,2024,52(2):60-77.
|
[6] |
|
[7] |
颜军培, 路学成, 张志强,等. 2024铝合金CMT+P电弧增材制造组织与耐腐蚀性能[J].材料工程,2025,53(3):105-116.
|
[8] |
郑元翾,韩启飞,陈斌凌,等.镁合金倾斜薄壁电弧熔丝增材制造工艺与力学性能研究[J].材料工程,2024,52(7):57-70.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
占彬,冯日海,何杰,等.碳钢双丝与单丝等离子弧增材制造成形及组织特征分析[J].焊接学报,2019,40(6):77-81.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
/
〈 |
|
〉 |