高能量密度无负极锂金属电池研究进展

梁淑贞, 刘玉峰, 肖思琪, 刘子梁, 李勇

PDF(1196 KB)
PDF(1196 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 94-103. DOI: 10.11868/j.issn.1001-4381.2024.000731
综述

高能量密度无负极锂金属电池研究进展

作者信息 +

Research progress in high energy density anode-free lithium metal batteries

Author information +
History +

摘要

随着便携式电子设备和电动汽车的发展,传统锂离子电池能量密度接近理论极限,对于具有高能量密度的锂金属电池研究再度受到关注。然而,锂的高反应活性导致使用过量锂时安全风险增加且能量密度降低,无负极锂金属电池(anode-free lithium metal batteries,AF-LMBs)应运而生,其具有高能量密度和最低氧化还原电位,但循环寿命差,活性材料有限且界面反应复杂。提高AF-LMBs的循环稳定性是实现高能量密度储能系统应用的关键。本文综述了AF-LMBs的发展历程,并从锂枝晶、电解液稳定性、固体电解质界面(solid electrolyte interface,SEI)和集流体四方面深入分析了AF-LMBs目前面临的挑战,这些因素共同影响AF-LMBs的循环稳定性、安全性以及能量密度。最后指出未来研究方向应集中在电解液配方优化、人工SEI层设计以及集流体材料与结构改进,同时关注电池体积能量密度,以满足实际应用中对紧凑高效储能系统的需求,从而推动AF-LMBs的商业化进程。

Abstract

With the development of portable electronic devices and electric vehicles, the energy density of traditional lithium-ion batteries is approaching their theoretical limit. The research on lithium metal batteries with high energy density has been re-focused. However, the high reactivity of lithium increases safety risks and reduces energy density when excess lithium is used. Anode-free lithium metal batteries (AF-LMBs) have emerged as a solution. AF-LMBs possess high energy density and the lowest redox potential. But they have poor cycle life, limited active materials, and complex interfacial reactions. Improving the cycle stability of AF-LMBs is key to realizing the application of high-energy-density storage systems.This paper reviews the development of AF-LMBs and analyzes in depth the current challenges they face from four aspects: lithium dendrites, electrolyte stability, solid electrolyte interface (SEI), and current collectors. These factors together affect the cycle stability, safety, and energy density of AF-LMBs. Finally, it is pointed out that the future research directions should focus on optimizing electrolyte formulations, designing artificial SEI layers, and improving current collector materials and structures. Meanwhile, paying attention to the volumetric energy density of batteries to meet the demand for compact and efficient energy storage systems in practical applications, thereby promoting the commercialization of AF-LMBs.

关键词

无负极锂金属电池 / 锂枝晶 / 电解液 / 固体电解质界面 / 集流体

Key words

anode-free lithium metal batteries / lithium dendrite / electrolyte / SEI / current collector

中图分类号

TM911

引用本文

导出引用
梁淑贞 , 刘玉峰 , 肖思琪 , . 高能量密度无负极锂金属电池研究进展. 材料工程. 2025, 53(7): 94-103 https://doi.org/10.11868/j.issn.1001-4381.2024.000731
Shuzhen LIANG, Yufeng LIU, Siqi XIAO, et al. Research progress in high energy density anode-free lithium metal batteries[J]. Journal of Materials Engineering. 2025, 53(7): 94-103 https://doi.org/10.11868/j.issn.1001-4381.2024.000731

参考文献

[1]
SHARMA S K SHARMA G GAUR A, et al. Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries[J]. Energy Advances20221(8): 457-510.
[2]
邵海涛, 闫华军, 王伟, 等. 辊压温度对锂离子电池正极微观结构及性能的影响[J]. 材料工程202452(11): 158-165.
SHAO H T YAN H J WANG W, et al. Effect of calendaring temperature on microstructure and properties for Li-ion batteries cathode[J]. Journal of Materials Engineering202452(11): 158-165.
[3]
ZHANG Y ZUO T T POPOVIC J, et al. Towards better Li metal anodes: challenges and strategies[J]. Materials Today202033: 56-74.
[4]
HOSSAIN M H CHOWDHURY M A HOSSAIN N, et al. Advances on synthesis and performance of Li-Ion anode batteries-a review[J]. Chemical Engineering Journal Advances202417: 100588.
[5]
XIE Z WU Z AN X, et al.Anode-free rechargeable lithium metal batteries[J]. Advanced Functional Materials201626(39): 7094-7102.
[6]
LOULI J A ELDESOKY A WEBER R, et al.Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J].Nature Energy20205(9):693-702.
[7]
ZHANG J G. Anode-less[J]. Nature Energy20194(8): 637-638.
[8]
LIU W LUO Y HU Y, et al. Interrelation between external pressure, SEI structure, and electrodeposit morphology in an anode-free lithium metal battery[J]. Advanced Energy Materials202414(5): 2302261.
[9]
LIN L QIN K HU Y, et al. A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries[J]. Advanced Materials202234(23): 2110323.
[10]
LIN L QIN K LI M, et al. Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries[J]. Energy Storage Materials202245: 821-827.
[11]
BRISSOT C ROSSO M CHAZALVIEL J N. Dendritic growth mechanisms in lithium/polymer cells[J]. Journal of Power Sources199981(98): 925-929.
[12]
TIKEKAR M D CHOUDHURY S TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy20161: 16114.
[13]
丰闪闪,刘晓斌,郭石麟,等.锂枝晶的成核、生长与抑制[J].化工学报202273(1): 97-109.
FENG S S LIU X B GUO S L, et al. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal202273(1): 97-109.
[14]
WANG Z SUN Z LI J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews202150(5): 3178-3210.
[15]
SAND H J S. Ⅲ on the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science19011(1): 45-79.
[16]
BAI P LI J BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy & Environmental Science20169(10): 3221-3229.
[17]
WANG X ZENG W HONG L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy20183(3): 227-235.
[18]
FLEURY V CHAZALVIEL J N ROSSO M, et al. The role of the anions in the growth speed of fractal electrodeposits[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry1990290(1/2): 249-255.
[19]
CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A199042(12): 7355-7367.
[20]
QIU X G LIU W LIU J D, et al. Nucleation mechanism and substrate modification of lithium metal anode[J]. Acta Physico-Chimica Sinica202137(1): 2009012.
[21]
KUSHIMA A SO K P SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy201732: 271-279.
[22]
YAMAKI J TOBISHIMA S HAYASHI K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J]. Journal of Power Sources199874(2): 219-227.
[23]
SASTRE J FUTSCHER M H POMPIZI L, et al. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte[J]. Communications Materials20212(1): 76.
[24]
DING F XU W GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society2013135(11): 4450-4456.
[25]
WANG D ZHANG W ZHENG W T, et al. Towards highsafe lithium metal anodes: suppressing lithium dendrites via tuning surface energy[J]. Advanced Science20174(1): 1600168.
[26]
PEKLAR R MIKAC U SERŠA I. Simulation of dendrite growth with a diffusion-limited aggregation model validated by MRI of a lithium symmetric cell during charging[J]. Batteries202410(10):352.
[27]
PANT B R REN Y CAO Y. Dendrite growth and dead lithium formation in lithium metal batteries and mitigation using a protective layer: a phase-field study[J]. ACS Applied Materials & Interfaces202416(42): 56947-56956.
[28]
NING Z LI G MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature2023618(7964): 287-293.
[29]
LEE J A KANG H KIM S, et al. Unveiling degradation mechanisms of anode-free Li-metal batteries[J]. Energy Storage Materials202473: 103826.
[30]
吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报202137(2): 2008044.
WU C ZHOU Y ZHU X L, et al. Research progress on high concentration electrolytes for Li metal batteries[J]. Acta Physico-Chimica Sinica202137(2): 2008044.
[31]
CAO X JIA H XU W, et al. Localized high-concentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society2021168(1): 010522.
[32]
CHEN J ZHANG H FANG M, et al. Design of localized high-concentration electrolytes via donor number[J]. ACS Energy Letters20238(4): 1723-1734.
[33]
郭姿珠,张睿,孙旦,等.无负极锂金属电池在局部高浓度电解液中的产气研究[J].化学学报202482(9): 919-924.
GUO Z Z ZHANG R SUN D, et al. Gas generation in anode-free Li-metal batteries with localized high-concentration electrolytes[J]. Acta Chimica Sinica202482(9): 919-924.
[34]
ZHOU M LIU W SU Q, et al. Ionic liquid additive mitigating lithium loss and aluminum corrosion for high-voltage anode-free lithium metal batteries[J]. ACS Nano202418(47): 32959-32972.
[35]
HAGOS T T THIRUMALRAJ B HUANG C J, et al. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries[J]. ACS Applied Materials & Interfaces201911(10): 9955-9963.
[36]
PATHIRANA T KERR R FORSYTH M, et al. Application of super-concentrated phosphonium based ionic liquid electrolyte for anode-free lithium metal batteries[J]. Sustainable Energy & Fuels20215(16): 4141-4152.
[37]
YE X WU J LIANG J, et al. Locally fluorinated electrolyte medium layer for high-performance anode-free Li-metal batteries[J]. ACS Applied Materials & Interfaces202214(48): 53788-53797.
[38]
DENG J LIN H HU L, et al. Formulating electrolytes for 4.6 V anode-free lithium metal batteries[J]. Molecules202429(20): 4831.
[39]
HUANG C J HSU Y C SHITAW K N, et al. Lithium oxalate as a lifespan extender for anode-free lithium metal batteries[J]. ACS Applied Materials & Interfaces202214(23): 26724-26732.
[40]
ZHAO Q STALIN S ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule20215(5): 1119-1142.
[41]
SUN J ZHANG S LI J, et al. Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries[J]. Advanced Materials202335(20): 2209404.
[42]
LIU X LIU J ZHAO H, et al. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries[J]. Journal of Colloid and Interface Science2025679: 1106-1116.
[43]
KOUL S MORITA Y FUJISAKI F, et al. Effect of liquid metal coating on improved cycle performance of anode-free lithium metal battery[J]. Journal of the Electrochemical Society2022169(2): 020542.
[44]
LEE J H CHO Y G GU D, et al. 2D PdTe2 thin-film-coated current collectors for long-cycling anode-free rechargeable batteries[J]. ACS Applied Materials & Interfaces202214(13): 15080-15089.
[45]
AHN S, SONG H KIM S, et al. Synergistic effect of embossed Cu current collector and potassium nitrate for achieving dense lithium deposition and improving cycle life in anode-free Li metal batteries[J]. Journal of the Korean Ceramic Society202461(2): 267-278.
[46]
MIRBAGHERI S GIBERTINI E MAGAGNIN L. Inkjet-printed silver lithiophilic sites on copper current collectors: tuning the interfacial electrochemistry for anode-free lithium batteries[J]. Batteries202410(10): 369.
[47]
郭姿珠,张睿,孙旦,等.黄铜集流体在无负极锂金属电池中的应用研究[J].中国有色金属学报202434(9): 3092-3102.
GUO Z Z ZHANG R SUN D, et al. Brass foil as negative current collector for anode-free Li-metal batteries[J]. The Chinese Journal of Nonferrous Metals202434(9): 3092-3102.
[48]
OUYANG Z WANG S WANG Y, et al. An ultralight composite current collector enabling high-energy-density and high-rate anode-free lithium metal battery[J]. Advanced Materials202436(33): 2407648.
[49]
刘泽宇,黄文泽,肖阳,等.全固态无负极锂金属电池纳米化复合集流体构筑[J].物理化学学报202440(3): 2305040.
LIU Z Y HUANG W Z XIAO Y, et al. Nanocomposite current collectors for anode-free all-solid-state lithium batteries[J]. Acta Physico-Chimica Sinica202440(3): 2305040.
[50]
SHEN X ZHANG R SHI P, et al. The dead lithium formation under mechano-electrochemical coupling in lithium metal batteries[J]. Fundamental Research20244(6): 1498-1505.
[51]
BAPTISTA M C GUERREIRO A N KHALIFA H, et al. Anode-less rechargeable lithium battery: the effect of an artificial interface layer[J]. Materials Proceedings20228(1): 60.
[52]
LIN L QIN K ZHANG Q, et al. Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries[J]. Angewandte Chemie International Edition202160(15): 8289-8296.
[53]
LIM H S NGUYEN D T LOCHALA J A, et al. Improving cycling performance of anode-free lithium batteries by pressure and voltage control[J]. ACS Energy Letters20239(1): 126-135.
[54]
HUANG W Z ZHAO C Z WU P, et al. Anode-free solid-state lithium batteries: a review[J]. Advanced Energy Materials202212(26): 2201044.
[55]
张宇昊, 钱涛, 刘杰. 无负极锂金属电池的研究进展[J]. 有机化学研究202311(4): 245-262.
ZHANG Y H QIAN T LIU J. Advances on anode free lithium metal batteries[J]. Journal of Organic Chemistry Research202311(4): 245-262.

基金

宜春市重大科技项目(2023ZDJCYJ02)
江西省教育厅科技计划(GJJ2200818)
赣州市重点研发计划项目(GZ2024ZDY019)
科技成果熟化与工程化项目(2024SHCC0012)

评论

PDF(1196 KB)

Accesses

Citation

Detail

段落导航
相关文章

/