
高能量密度无负极锂金属电池研究进展
梁淑贞, 刘玉峰, 肖思琪, 刘子梁, 李勇
高能量密度无负极锂金属电池研究进展
Research progress in high energy density anode-free lithium metal batteries
随着便携式电子设备和电动汽车的发展,传统锂离子电池能量密度接近理论极限,对于具有高能量密度的锂金属电池研究再度受到关注。然而,锂的高反应活性导致使用过量锂时安全风险增加且能量密度降低,无负极锂金属电池(anode-free lithium metal batteries,AF-LMBs)应运而生,其具有高能量密度和最低氧化还原电位,但循环寿命差,活性材料有限且界面反应复杂。提高AF-LMBs的循环稳定性是实现高能量密度储能系统应用的关键。本文综述了AF-LMBs的发展历程,并从锂枝晶、电解液稳定性、固体电解质界面(solid electrolyte interface,SEI)和集流体四方面深入分析了AF-LMBs目前面临的挑战,这些因素共同影响AF-LMBs的循环稳定性、安全性以及能量密度。最后指出未来研究方向应集中在电解液配方优化、人工SEI层设计以及集流体材料与结构改进,同时关注电池体积能量密度,以满足实际应用中对紧凑高效储能系统的需求,从而推动AF-LMBs的商业化进程。
With the development of portable electronic devices and electric vehicles, the energy density of traditional lithium-ion batteries is approaching their theoretical limit. The research on lithium metal batteries with high energy density has been re-focused. However, the high reactivity of lithium increases safety risks and reduces energy density when excess lithium is used. Anode-free lithium metal batteries (AF-LMBs) have emerged as a solution. AF-LMBs possess high energy density and the lowest redox potential. But they have poor cycle life, limited active materials, and complex interfacial reactions. Improving the cycle stability of AF-LMBs is key to realizing the application of high-energy-density storage systems.This paper reviews the development of AF-LMBs and analyzes in depth the current challenges they face from four aspects: lithium dendrites, electrolyte stability, solid electrolyte interface (SEI), and current collectors. These factors together affect the cycle stability, safety, and energy density of AF-LMBs. Finally, it is pointed out that the future research directions should focus on optimizing electrolyte formulations, designing artificial SEI layers, and improving current collector materials and structures. Meanwhile, paying attention to the volumetric energy density of batteries to meet the demand for compact and efficient energy storage systems in practical applications, thereby promoting the commercialization of AF-LMBs.
无负极锂金属电池 / 锂枝晶 / 电解液 / 固体电解质界面 / 集流体
anode-free lithium metal batteries / lithium dendrite / electrolyte / SEI / current collector
TM911
[1] |
|
[2] |
邵海涛, 闫华军, 王伟, 等. 辊压温度对锂离子电池正极微观结构及性能的影响[J]. 材料工程, 2024, 52(11): 158-165.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
丰闪闪,刘晓斌,郭石麟,等.锂枝晶的成核、生长与抑制[J].化工学报, 2022, 73(1): 97-109.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 2008044.
|
[31] |
|
[32] |
|
[33] |
郭姿珠,张睿,孙旦,等.无负极锂金属电池在局部高浓度电解液中的产气研究[J].化学学报, 2024, 82(9): 919-924.
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
AHN S,
|
[46] |
|
[47] |
郭姿珠,张睿,孙旦,等.黄铜集流体在无负极锂金属电池中的应用研究[J].中国有色金属学报, 2024,34(9): 3092-3102.
|
[48] |
|
[49] |
刘泽宇,黄文泽,肖阳,等.全固态无负极锂金属电池纳米化复合集流体构筑[J].物理化学学报, 2024, 40(3): 2305040.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
张宇昊, 钱涛, 刘杰. 无负极锂金属电池的研究进展[J]. 有机化学研究, 2023, 11(4): 245-262.
|
/
〈 |
|
〉 |