
DZ125涡轮叶片服役组织损伤的亚固溶恢复热处理
翟梦园, 邵益凯, 王辉明, 郑为为
DZ125涡轮叶片服役组织损伤的亚固溶恢复热处理
Sub-solvus recovery heat treatment for service microstructure damage of DZ125 turbine blades
通过解剖实际服役499 h的DZ125涡轮叶片,并结合人工神经网络模型对叶片不同部位进行服役温度和应力评估,确定涡轮叶片的正常和超温服役组织。以涡轮叶片用DZ125合金为研究对象,通过925 ℃/32~200 MPa/500 h和1075 ℃/10~60 MPa/100 h的变截面实验模拟叶片的正常和超温服役,并对两种服役组织进行1200 ℃固溶温度的亚固溶恢复热处理,观察亚固溶恢复热处理对两种服役组织的影响。结果表明:DZ125涡轮叶片损伤最严重部位为叶身中部的进气边,服役温度最高达到1075 ℃。DZ125合金在1075 ℃变截面条件下的显微组织退化情况比925 ℃变截面条件下的严重,经过亚固溶恢复热处理,925 ℃变截面条件模拟的正常服役组织退化,而1075 ℃变截面条件模拟的超温服役组织中有立方状二次γ′相析出,特定超温服役损伤态DZ125合金经过亚固溶恢复热处理后,在980 ℃/220 MPa条件下的蠕变寿命由16 h提升到25 h。亚固溶恢复热处理对正常服役组织是不利的,对超温服役组织有恢复效果。
By dissecting DZ125 turbine blades that have been in actual service for 499 h and integrating an artificial neural network model to assess the service temperature and stress in various blade components, the normal and overtemperature service tissues of the turbine blades have been identified. Focusing on DZ125 alloy for turbine blades, simulations of normal and overtemperature service conditions are conducted through variable cross-section experiments at 925 ℃/32-200 MPa/500 h and 1075 ℃/10-60 MPa/100 h, respectively. Both service structures undergo sub-solvus recovery heat treatment at a solid solution temperature of 1200 ℃, and the impacts of this treatment on both service structures are observed. The results reveal that the most severely damaged part of the DZ125 turbine blade is the leading edge in the middle of the blade, with a maximum service temperature of 1075 ℃. The microstructure degradation of DZ125 alloy is more pronounced at 1075 ℃ compared to 925 ℃. Following sub-solvus recovery heat treatment, the normal service structure simulated at 925 ℃ with variable cross sections exhibits degradation, whereas the overtemperature service structure simulated at 1075 ℃ with variable cross sections shows precipitation of cubic secondary γ′ phase. Notably, after sub-solvus recovery heat treatment, the creep life of DZ125 alloy in a specific overtemperature service damage state increases from 16 h to 25 h under conditions of 980 ℃/220 MPa. The sub-solvus recovery heat treatment proves detrimental to the normal temperature service microstructure but has a beneficial recovery effect on the overtemperature service microstructure.
DZ125涡轮叶片 / 超温服役组织 / 变截面实验 / 亚固溶恢复热处理
DZ125 turbine blade / overtemperature service microstructure / variable section test / sub-solvus recovery heat treatment
TG156 / TG31
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
孙淑珍, 李淑媛, 郑运荣. WJ5A发动机涡轮叶片折断及裂纹分析[J]. 材料工程, 1990(3): 45-48.
|
[7] |
赵文侠, 李莹, 范映伟,等. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012(8): 39-44.
|
[8] |
|
[9] |
蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1986.
|
[10] |
|
[11] |
|
[12] |
陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究[J]. 金属学报, 2016, 52(12): 1545-1556.
|
[13] |
|
[14] |
郭建亭. 高温合金材料学(Ⅱ) [M]. 北京: 科学出版社, 2008.
|
[15] |
|
[16] |
|
[17] |
张京, 郑运荣, 冯强. 基于蠕变损伤的定向凝固DZ125 合金恢复热处理研究[J]. 金属学报, 2016, 52(6): 717-726.
|
[18] |
李秋良, 周鑫, 王学德, 等. DZ125高温合金涡轮叶片的性能恢复热处理[J]. 金属热处理, 2019, 44(5): 72-76.
|
[19] |
王天佑, 王小蒙, 赵子华, 等. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
|
[20] |
付超. 基于微观组织演变的 DZ125 定向凝固涡轮叶片高温蠕变寿命评估[D]. 北京: 北京科技大学, 2019.
|
[21] |
陈亚东. 定向凝固DZ125合金高压涡轮叶片正常服役损伤及其评价研究[D]. 北京: 北京科技大学, 2016.
|
[22] |
《中国航空材料手册》编辑委员会. 中国航空材料手册·第2卷·变形高温合金·铸造高温合金[M]. 2版.北京: 中国标准出版社, 2001.
Editorial Committee of the "China Aeronautical Materials Handbook". China aeronautical materials handbook, volume 2: wrought superalloys & cast superalloys[M]. 2nd ed. Beijing: Standards Press of China, 2001.
|
[23] |
|
[24] |
|
[25] |
徐可君, 王永旗, 夏毅锐,等. 某型发动机150 h持久试车涡轮部件寿命消耗研究[J]. 航空发动机, 2015, 41(2): 60-65.
|
[26] |
冯强, 童锦艳, 郑运荣. 燃气涡轮叶片的服役损伤与修复[J]. 中国材料进展, 2012, 31(12): 21-34.
|
[27] |
|
/
〈 |
|
〉 |