
普鲁士蓝类储钠正极材料的改性策略进展
杨欢, 李纯纯, 和亮, 牛玉斌
普鲁士蓝类储钠正极材料的改性策略进展
Advances in modification strategies of Prussian blue-type cathode materials for sodium-ion batteries
普鲁士蓝及其类似化合物(Prussian blue analogous, PBAs)因其固有的热力学稳定性、宽广的离子插层/脱嵌通道、丰富的电化学活性位点以及可调节的化学组成与元素比例,已经成为下一代钠离子电池正极材料的有力候选者。然而,这类材料的电化学性能常常受到晶体缺陷和高含量结晶水及间隙水的影响。本文论述了PBAs的结构,并从单电子和双电子的角度概括了其分类,探讨了当前这类材料面临的挑战,并从结晶度控制、缺陷控制、形貌调控、离子掺杂/取代、组分优化以及碳包覆/复合六个方面系统地综述了现有的典型改性策略,评述了这类材料从实验室研究向产业化应用过渡的现状。此外,本文还展望了PBAs在钠离子电池领域的发展前景,通过材料工程和表面科学的进步,PBAs有望从实验室阶段迈向工业化应用。
Prussian blue analogous compounds (PBAs) have emerged as promising candidates for cathode materials in next-generation sodium-ion batteries (SIBs), attributed to their inherent thermodynamic stability, expansive ion intercalation/deintercalation pathways, abundant electrochemically active sites, as well as their adjustable chemical compositions and elemental ratios. However, the electrochemical performance of these materials is frequently compromised by crystal defects and high levels of crystalline and interstitial water content. This review delves into the structure of PBAs, categorizing them from both single-electron and two-electron perspectives. It examines the prevalent challenges faced by PBAs, systematically reviewing existing typical modification strategies across six dimensions: crystallinity control, defect mitigation, morphology modulation, ion doping/substitution, component optimization, and carbon coating/compositing. Furthermore, it offers insights into the current status of PBAs in transitioning from laboratory research to industrial applications. Looking ahead, this paper anticipates the development of PBAs in the realm of SIBs, expecting them to advance from the laboratory stage to industrialized applications through advancements in materials engineering and surface science.
钠离子电池 / 普鲁士蓝及其类似物 / 改性策略 / 正极材料
sodium-ion battery / Prussian blue analogues / modification strategy / cathode material
O646
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
吕奕菊, 梁勇清, 谭家栩, 等. 改性水系钠离子电极材料Na3V2(PO4)3的制备及性能[J]. 材料工程, 2023, 51(9): 158-166.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
吴晨, 钱江锋, 杨汉西, 等. 普鲁士蓝类嵌入正极材料的发展与挑战[J]. 中国科学学报, 2017, 47(5): 603-613.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
LIM S,
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
/
〈 |
|
〉 |