普鲁士蓝类储钠正极材料的改性策略进展

杨欢, 李纯纯, 和亮, 牛玉斌

PDF(5593 KB)
PDF(5593 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 42-56. DOI: 10.11868/j.issn.1001-4381.2024.000625
钠离子电池产业化专栏

普鲁士蓝类储钠正极材料的改性策略进展

作者信息 +

Advances in modification strategies of Prussian blue-type cathode materials for sodium-ion batteries

Author information +
History +

摘要

普鲁士蓝及其类似化合物(Prussian blue analogous, PBAs)因其固有的热力学稳定性、宽广的离子插层/脱嵌通道、丰富的电化学活性位点以及可调节的化学组成与元素比例,已经成为下一代钠离子电池正极材料的有力候选者。然而,这类材料的电化学性能常常受到晶体缺陷和高含量结晶水及间隙水的影响。本文论述了PBAs的结构,并从单电子和双电子的角度概括了其分类,探讨了当前这类材料面临的挑战,并从结晶度控制、缺陷控制、形貌调控、离子掺杂/取代、组分优化以及碳包覆/复合六个方面系统地综述了现有的典型改性策略,评述了这类材料从实验室研究向产业化应用过渡的现状。此外,本文还展望了PBAs在钠离子电池领域的发展前景,通过材料工程和表面科学的进步,PBAs有望从实验室阶段迈向工业化应用。

Abstract

Prussian blue analogous compounds (PBAs) have emerged as promising candidates for cathode materials in next-generation sodium-ion batteries (SIBs), attributed to their inherent thermodynamic stability, expansive ion intercalation/deintercalation pathways, abundant electrochemically active sites, as well as their adjustable chemical compositions and elemental ratios. However, the electrochemical performance of these materials is frequently compromised by crystal defects and high levels of crystalline and interstitial water content. This review delves into the structure of PBAs, categorizing them from both single-electron and two-electron perspectives. It examines the prevalent challenges faced by PBAs, systematically reviewing existing typical modification strategies across six dimensions: crystallinity control, defect mitigation, morphology modulation, ion doping/substitution, component optimization, and carbon coating/compositing. Furthermore, it offers insights into the current status of PBAs in transitioning from laboratory research to industrial applications. Looking ahead, this paper anticipates the development of PBAs in the realm of SIBs, expecting them to advance from the laboratory stage to industrialized applications through advancements in materials engineering and surface science.

关键词

钠离子电池 / 普鲁士蓝及其类似物 / 改性策略 / 正极材料

Key words

sodium-ion battery / Prussian blue analogues / modification strategy / cathode material

中图分类号

O646

引用本文

导出引用
杨欢 , 李纯纯 , 和亮 , . 普鲁士蓝类储钠正极材料的改性策略进展. 材料工程. 2025, 53(7): 42-56 https://doi.org/10.11868/j.issn.1001-4381.2024.000625
Huan YANG, Chunchun LI, Liang HE, et al. Advances in modification strategies of Prussian blue-type cathode materials for sodium-ion batteries[J]. Journal of Materials Engineering. 2025, 53(7): 42-56 https://doi.org/10.11868/j.issn.1001-4381.2024.000625

参考文献

[1]
NAYAK P K YANG L T BREHM W, et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises[J]. Angewandte Chemie International Edition201757(1): 102-120.
[2]
ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts? [J] ACS Energy Letters20205(11): 3544-3547.
[3]
LIU Q N HU Z CHEN M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small201915(32): e1805381.
[4]
FATIMA H ZHONG Y J WU H W, et al. Recent advances in functional oxides for high energy density sodium-ion batteries[J]. Materials Reports: Energy20211(2): 100022.
[5]
吕奕菊, 梁勇清, 谭家栩, 等. 改性水系钠离子电极材料Na3V2(PO43的制备及性能[J]. 材料工程202351(9): 158-166.
LYU Y J LIANG Y Q TAN J X, et al. Preparation and properties of modified aqueous sodium-ion electrode material Na3V2(PO43 [J]. Journal of Materials Engineering202351(9): 158-166.
[6]
ZHAO A FANG Y J AI X P, et al. Mixed polyanion cathode materials: toward stable and high-energy sodium-ion batteries[J]. Journal of Energy Chemistry202160: 635-648.
[7]
TANG X LIU H SU D W, et al. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries[J]. Nano Research201811(8): 3979-3990.
[8]
WANG S J XIAO H REN Y R al et of Na Construction 3V 2(PO43/CN/rGO composite cathode material and its sodium storage performance[J]. Materials Reports, 2021, 35(24), 24006-24010.
[9]
JIANG Y Z YU S L WANG B Q, et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode[J]. Advanced Functional Materials201626(29): 5315-5321.
[10]
QIAN J F WU C CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials20188(17): 1702619.
[11]
PENG J HUANG J Q GAO Y, et al. Defect-healing induced monoclinic iron-based prussian blue analogs as high-performance cathode materials for sodium-ion batteries[J]. Small202319(36): 2300435.
[12]
李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报202135(23): 23050.
LI H HE Y Y ZHOU G W. Research progress of Prussian blue and Prussian blue analogue in sodium ion batteries[J], Materials Review202135(23): 23050.
[13]
YOU Y WU X L YIN Y X, et al. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy Environ Sci20147(5): 1643-1647.
[14]
XU Y ZHOU M LEI Y. Nanoarchitectured array electrodes for rechargeable lithium-and sodium-ion batteries[J]. Advanced Energy Materials20166(10): 1502514.
[15]
LU Y H WANG L CHENG J G, et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chemical Communications201248(52): 6544-6546.
[16]
XIE B X SUN B Y GAO T Y, et al. Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coordination Chemistry Reviews2022460: 214478.
[17]
LI H HE Y Y ZHOU G W. Progress in sodium ion batteries of prussian blue and prussian blue analogs materials[J]. Materials Reports202135(23): 23050.
[18]
LEE H-W WANG R Y PASTA M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature Communications20145(1): 5280.
[19]
吴晨, 钱江锋, 杨汉西, 等. 普鲁士蓝类嵌入正极材料的发展与挑战[J]. 中国科学学报201747(5): 603-613.
WU C QIAN J F YANG H X, et al.Recent progress and challenges in the development of Prussian blue analogues as new intercalation cathode materials[J]. Scientia Sinica Chimica201747(5): 603-613.
[20]
MA F LI Q WANG T Y, et al. Energy storage materials derived from prussian blue analogues[J]. Science Bulletin201762(5): 358-368.
[21]
MINOWA H, YUI Y, ONO Y, et al. Characterization of prussian blue as positive electrode materials for sodium-ion batteries[J]. Solid State Ionics2014262: 216-219.
[22]
PENG J ZHANG W LIU Q N, et al. Prussian blue analogues for sodium-ion batteries: past, present, and future[J]. Advanced Materials202234(15): 2108384.
[23]
REHMAN R PENG J YI H C, et al. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries[J]. RSC Advances202010(45): 27033-27041.
[24]
XU Y WAN J HUANG L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries[J]. Advanced Energy Materials20189(4): 1803158.
[25]
WEI C FU X Y ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal2021421: 127760.
[26]
NIE P YUAN J R WANG J, et al. Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries[J]. ACS Applied Materials & Interfaces20179(24): 20306-20312.
[27]
GAO Y ZHANG H WANG J S, et al. Structural modulation of low-cost Cu-Mn-Fe prussian blue analogs for long-calendar-life sodium ion batteries[J]. https://doi.org/10.21203/rs.3.rs-2474646/v12023..
[28]
ADIL M, SAU S, DAMMALA P, et al. Comprehensive study of sodium copper hexacyanoferrate, as a sodium-rich low-cost positive electrode for sodium-ion batteries[J]. Energy & Fuels202236(14): 7816-7828.
[29]
ROJAS V CÁCERES G LÓPEZ S, et al. Rechargeable sodium-ion battery based on a cathode of copper hexacyanoferrate[J]. Journal of Solid State Electrochemistry202327(4): 865-872.
[30]
TANG Y LI W FENG P Y, et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries[J]. Advanced Functional Materials202030(10): 1908754.
[31]
XU C L MA Y Z ZHAO J M, et al. Surface engineering stabilizes rhombohedral sodium manganese hexacyanoferrates for high-energy Na-ion batteries[J]. Angewandte Chemie International Edition202362(13): e202217761.
[32]
GUO Y D JIANG J C XIE J, et al. Enhanced performance of core-shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+-Cs+ ion exchange for sodium-ion batteries[J]. Rare Metals202241(11): 3740-3751.
[33]
CALIXTO-LOZADA O VAZQUEZ-SAMPERIO J CóRDOBA-TUTA E, et al. Growth of cobalt hexacyanoferrate particles through electrodeposition and chemical etching of cobalt precursors on reticulated vitreous carbon foams for Na-ion electrochemical storage[J]. Solid State Sciences2021116: 106603.
[34]
TAKACHI M MATSUDA T MORITOMO Y. Cobalt hexacyanoferrate as cathode material for Na+ secondary battery[J]. Applied Physics Express20136(2): 025802.
[35]
ZHANG J W WAN J OU M Y, et al. Enhanced all-climate sodium-ion batteries performance in a low-defect and Na-enriched prussian blue analogue cathode by nickel substitution[J]. Energy Materials20233: 300008.
[36]
ZANG J Q MAO Y Y LIU X F, et al. Controlled crystallization of carbon-blended prussian blue analogs for advanced sodium-ion batteries[J]. The Journal of Physical Chemistry C2023127(39): 19424-19431.
[37]
XU Y WAN J HUANG L, et al. Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries[J]. Energy Storage Materials202033: 432-441.
[38]
GENG W Q ZHANG Z H YANG Z L, et al. Non-aqueous synthesis of high-quality prussian blue analogues for Na-ion batteries[J]. Chemical Communications202258(28): 4472-4475.
[39]
XIANG J J HAO Y C GAO Y T, et al. Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries[J]. Journal of Alloys and Compounds2023946: 169284.
[40]
WU X Y WU C H WEI C X, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces20168(8): 5393-5399.
[41]
LIU Y J FAN S W GAO Y, et al. Isostructural synthesis of iron-based prussian blue analogs for sodium-ion batteries[J]. Small202319(43): 2302687.
[42]
HUANG Y ZHANG X JI L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach[J]. Energy Storage Materials202358: 1-8.
[43]
WANG W L GANG Y PENG J, et al. Effect of eliminating water in prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials202232(25): 2111727.
[44]
WAN P XIE H ZHANG N, et al. Stepwise hollow prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode[J]. Advanced Functional Materials202030(38): 2002624.
[45]
WANG Z H HUANG Y X CHU D T, et al. Continuous conductive networks built by prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances[J]. ACS Applied Materials & Interfaces202113(32): 38202-38212.
[46]
WANG Y JIANG N YANG C, et al. High-entropy Prussian blue analogs with 3D confinement effect for long-life sodium-ion batteries[J]. Journal of Materials Chemistry A202412 (9): 5170-5180.
[47]
HE L RUAN L YAO W, et al. Tailoring sodium iron hexacyanoferrate/carbon nanotube arrays with 3D networks for efficient sodium ion storage[J]. Journal of Electronic Materials202352 (6): 3517-3525.
[48]
ZUO D X WANG C P HAN J J, et al. Oriented formation of a prussian blue nanoflower as a high-performance cathode for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering20208(43): 16229-16240.
[49]
LIU Y WEI G Y MA M Y, et al. Role of acid in tailoring prussian blue as cathode for high-performance sodium-ion battery[J]. Chemistry-A European Journal201723(63): 15991-15996.
[50]
HAN J HU Y HAN Q, et al. Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure[J]. Journal of Alloys and Compounds2023950: 169928.
[51]
JIANG W QI W T PAN Q Q, et al. Potassium ions stabilized hollow Mn-based prussian blue analogue nanocubes as cathode for high performance sodium ions battery[J]. International Journal of Hydrogen Energy202146(5): 4252-4258.
[52]
JIANG M REN L HOU Z, et al.A superior sodium-ion battery based on tubular Prussian blue cathode and its derived phosphide anode[J]. Journal of Power Sources2023554: 232334.
[53]
PAN Z T HE Z H HOU J F, et al. Designing CoHCF@FeHCF core-shell structures to enhance the rate performance and cycling stability of sodium‐ion batteries[J]. Small202319 (45): 2302788.
[54]
BIE X KUBOTA K HOSAKA T, et al. Synthesis and electrochemical properties of Na-rich prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries[J]. Journal of Power Sources2018378: 322-330.
[55]
ZHU Y H ZHANG Z BAO J J, et al. Multi‐metal doped high capacity and stable Prussian blue analogue for sodium ion batteries[J]. International Journal of Energy Research202044(11): 9205-9212.
[56]
ZHANG H PENG J LI L, et al. Low-cost zinc substitution of iron-based prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries[J]. Advanced Functional Materials202333(2): 2210725.
[57]
QUAN J J XU E Z ZHU H W, et al. A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries[J]. Physical Chemistry Chemical Physics202123(3): 2491-2499.
[58]
LIU X GONG H HAN C, et al. Barium ions act as defenders to prevent water from entering prussian blue lattice for sodium-ion battery[J]. Energy Storage Materials202357: 118-124.
[59]
LIM S, CHOI D JEONG T, et al. Carboxylate-derived conductive, sodium-ion storable surface of Prussian Blue with a stable cathode-electrolyte interface[J]. Journal of Alloys and Compounds2023938: 168502.
[60]
QIAO S DONG S YUAN L, et al. Structure defects engineering in Prussian blue cathode materials for high-performance sodium-ion batteries[J]. Journal of Alloys and Compounds2023950: 169903.
[61]
PENG J ZHANG W HU Z, et al. Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters202222(3): 1302-1310.
[62]
WANG Z H HUANG Y X LUO R, et al. Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability[J]. Journal of Power Sources2019436: 226868.
[63]
FU H Y LIU C F ZHANG C K, et al. Enhanced storage of sodium ions in prussian blue cathode material through nickel doping[J]. Journal of Materials Chemistry A20175(20): 9604-9610.
[64]
PENG J WANG J S YI H C, et al. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs[J]. Advanced Energy Materials20188(11): 1702856.
[65]
PENG F W YU L GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A20197(39): 22248-22256.
[66]
HUANG Y X XIE M WANG Z H, et al. A chemical precipitation method preparing hollow-core-shell heterostructures based on the prussian blue analogs as cathode for sodium-ion batteries[J]. Small201814(28): 1801246.
[67]
YIN J W SHEN Y LI C, et al. In-situ self-assembly of core-shell multimetal prussian blue analogues for high-performance sodium-ion batteries[J]. ChemSusChem201912(21): 4786-4790.
[68]
TANG Y WANG L HU J W, et al. Epitaxial nucleation of Na x FeFe(CN)6@rGO with improved lattice regularity as ultrahigh-rate cathode for sodium-ion batteries[J]. Advanced Energy Materials202414: 230301.
[69]
ZHUO W C LI J L LI X D, et al. Improving rechargeability of prussian blue cathode by graphene as conductive agent for sodium ion batteries[J]. Surfaces and Interfaces202123: 100911.
[70]
LI Y LAM K H HOU X H. CNT-modified two-phase manganese hexacyanoferrate as a superior cathode for sodium-ion batteries[J]. Inorganic Chemistry Frontiers20218(7): 1819-1830.
[71]
XU X LAN Y L ZHANG B B, et al. Construction of polyaniline coated FeMnCu co-doped prussian blue analogue as cathode for sodium ion battery[J]. Electrochimica Acta2023471: 143375.
[72]
REN L JIANG M HOU Z, et al. Building Na-ion full cells using homologous Prussian blue and its phosphide derivative[J]. Applied Surface Science2023612: 155952.
[73]
PENG J GAO Y ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline prussian blue analogue Na2- x MnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie International Edition202261(32): e202205867.
[74]
WANG Y LIU J JIANG N, et al. Highly crystalline multivariate prussian blue analogs via equilibrium chelation strategy for stable and fast charging sodium-ion batteries[J]. Small202420(44): 2403211.
[75]
XU Z SUN Y XIE J, et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J]. Materials Today Sustainability202218: 100113.
[76]
XU Z SUN Y XIE J, et al. Scalable preparation of Mn/Ni binary Prussian blue as sustainable cathode for harsh-condition-tolerant sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering202210(40): 13277-13287.
[77]
WANG W GANG Y HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications202011: 980.
[78]
BAUER A SONG J VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials20188(17): 1702869.
[79]
HE M DAVIS R CHARTOUNI D, et al. Assessment of the first commercial Prussian blue based sodium-ion battery[J]. Journal of Power Sources2022548: 232036.

基金

国家自然科学青年基金(22005315)

评论

PDF(5593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/