
可重复使用刚性陶瓷隔热瓦辐射式热防护涂层研究进展
郭琳琳, 苗成朋, 张金君, 李江涛, 陶鑫, 王明超, 杜海燕, 刘家臣
可重复使用刚性陶瓷隔热瓦辐射式热防护涂层研究进展
Research progress in reusable radiant thermal protection coatings on rigid ceramic insulation tiles
刚性陶瓷纤维隔热瓦基体辐射式热防护涂层是航天飞行器大面积使用的热防护系统,提高其辐射率、抗冲击、抗热震等可重复使用性能一直是研究重点。本文综述了多元化性能优化背景下刚性陶瓷纤维隔热瓦基体辐射式热防护涂层结构设计和材料改进的研究进展,分析了辐射式热防护涂层的结构设计途径和组成调整思路,涂层从单层致密结构发展到多层梯度结构以及多层鳞片结构,并总结了不同结构辐射式热防护涂层的优势和存在问题。最后指出多层梯度结构涂层由于综合了致密结构和多孔梯度结构的综合优势且具有可调节性仍是当前研究的主流,未来辐射式热防护涂层应进一步优化防/隔热一体化设计,并开展结构、组成对服役仿真环境下的性能影响研究。
Radiation thermal protection coating based on rigid ceramic fiber insulation tile is a thermal protection system widely used in spacecraft, and improving its reusable performance such as emissivity, impact resistance, and thermal shock resistance has always been a research focus. This article reviews the research progress on the structural design and material improvement of radiation thermal protective coatings for rigid ceramic fiber insulation tiles under the background of diversified performance optimization. The structural design approach and composition adjustment ideas of radiation thermal protective coatings are analyzed, from single-layer dense structure to multi-layer gradient structure and scaly structure,and the advantages and existing problems of radiant thermal protection coatings with different structures are summarized. Finally, it is pointed out that multilayer gradient structure coatings, due to their comprehensive advantages of dense top layer and porous gradient structures and their adjustability, are still the mainstream of current research. In the future, radiant thermal protection coatings should further optimize the integrated design of thermal insulation, and conduct research on the impact of structure and composition on performance in service simulation environments.
辐射式热防护涂层 / 刚性陶瓷隔热瓦 / 可重复使用 / 多层梯度结构
radiant thermal protection coating / rigid ceramic insulation tile / reusable / multilayer gradient structure
TB35
[1] |
李俊宁,冯志海,张大海,等 .可重复使用热防护材料研究进展[J].宇航材料工艺,2024,54(2):1-10.
|
[2] |
冯志海,师建军,孔磊,等 .航天飞行器热防护系统低密度烧蚀防热材料研究进展[J].材料工程,2020,48(8):14-24.
|
[3] |
向阳,莫琛,彭志航,等 .防隔热一体化TPS材料制备及耐高温性能[J].材料工程,2023,51(8):207-214.
|
[4] |
|
[5] |
|
[6] |
黄竑翔,王峰,贺智勇,等 .飞行器用防热材料的研究进展[J].硅酸盐通报,2021,40(2):638-644.
|
[7] |
陶鑫 .MoSi2-(TaSi2-SiC-)玻璃基辐射式防热涂层的制备和性能研究[D].天津:天津大学,2018.
|
[8] |
|
[9] |
杨杰,隋学叶,刘瑞祥,等 .航天飞机及高超飞行器用刚性隔热材料研究进展[J].现代技术陶瓷,2015,36(3):25-29.
|
[10] |
陈玉峰,洪长青,胡成龙,等 .空天飞行器用热防护陶瓷材料[J].现代技术陶瓷,2017,38(5):311-390.
|
[11] |
郭琳琳,陶鑫,郭安然,等 .刚性陶瓷隔热瓦涂层的发展及其表面性质[J].材料导报,2016,30(10):119-126.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
郭琳琳 .溶胶基MoSi2系辐射式防热涂层的制备和性能研究[D].天津:天津大学,2021.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
Suppl 3
|
[20] |
|
[21] |
|
[22] |
|
[23] |
计延琦,朱时珍,马壮,等 .玻璃成分对MoSi2-SiB6-玻璃高发射涂层性能的影响[J].硅酸盐通报,2019,38(10):3221-3228.
|
[24] |
孙陈诚,何雅玲,王晓婷,等 .高辐射涂层对刚性隔热瓦性能的影响[J].宇航材料工艺,2018,48(3):42-46.
|
[25] |
|
[26] |
李晓雷,张驰,王萌,等. 新型MoSi2-Al2O3-SiO2系耐高温高发射涂层的热膨胀系数调控[J].稀有金属材料与工程,2015,44():200-203.
增刊1
Suppl 1
|
[27] |
|
[28] |
|
[29] |
林浩,冯军宗,姜勇刚,等 .SiCO陶瓷隔热复合材料TaSi2-MoSi2硼硅酸盐玻璃涂层制备与性能[J].宇航材料工艺,2016,46(5):42-45.
|
[30] |
|
[31] |
|
[32] |
李俊峰,罗正平 .硅化钽/硅化钼基热防护涂层短时高温结构演化[J].稀有金属材料与工程,2020,49(2):712-717.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
武勇斌,赫晓东,李军 .陶瓷隔热瓦表面SiO2-B2O3-MoSi2-SiB4涂层的制备与性能研究[J].航天制造技术,2012,30(5):6-9.
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
管弦,邵高峰,崔升,等 .高温快速热处理法制备梯度多孔硅化物-玻璃涂层及性能研究[J].南京工业大学学报(自然科学版),2018,40(5):48-53.
|
[49] |
|
[50] |
孙宇雷 .SiO2-Al2O3隔热瓦表面硼硅玻璃涂层热震行为研究[D].哈尔滨:哈尔滨工业大学,2018.
|
[51] |
孙宇雷,李明伟,钟业盛,等 .热暴露对陶瓷隔热瓦表面硼硅玻璃涂层组织的影响[J].表面技术,2019,48(1):83-89.
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
李伶,张文苑,隋学叶,等 .陶瓷隔热瓦耐高温高辐射率涂层的制备及表征[J].现代技术陶瓷,2016,37(2):131-137.
|
[58] |
|
[59] |
|
[60] |
黄秀波,张凡,赵英民,等 .Al2O3基多孔隔热材料表面Al2O3/MoSi2涂层的制备及其性能[J].复合材料学报,2020,37(11):2870-2876.
|
[61] |
|
[62] |
|
[63] |
武劲宇,杜海燕,刘家臣,等 .MoSi2-硼硅玻璃鳞片状高发射率耐高温涂层[J].稀有金属材料与工程,2020,49(2):661-668.
|
[64] |
|
[65] |
焦梦宇 .纤维增强鳞片状MoSi2-玻璃基涂层的制备与力学性能研究[D].天津:天津大学,2021.
|
[66] |
|
/
〈 |
|
〉 |