高安全锂离子电池用耐高温隔膜的研究进展

孙文浩, 刘娜, 张锟, 田君, 梁晓嫱, 田崔钧, 佟蕾, 徐春常, 魏岩巍

PDF(6505 KB)
PDF(6505 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 104-120. DOI: 10.11868/j.issn.1001-4381.2024.000546
综述

高安全锂离子电池用耐高温隔膜的研究进展

作者信息 +

Research progress in high temperature resistant separators for high safety lithium-ion batteries

Author information +
History +

摘要

锂离子电池因其高能量密度和长循环寿命等优势在二次电池市场占据绝对领先地位。然而,电池热失控频繁引起火灾事故,因此电池安全研究具有重要性和紧迫性。隔膜作为锂离子电池的关键组件之一,对电池的安全运行起到至关重要的作用。开发具有高力学强度、低热收缩率和良好自熄性等优异性能的耐高温隔膜能够显著提升电池在高温环境下的安全性。本文系统性地综述了锂离子电池用耐高温隔膜的研究新进展,包括对商用聚烯烃隔膜的改性研究以及对三种常见耐高温隔膜材料(聚丙烯腈、聚偏氟乙烯和芳纶纤维)的结构与性能研究,并对隔膜的特性参数如厚度、孔隙率、离子电导率、热收缩率等进行了归纳总结。最后,对耐高温隔膜研究领域未来的发展方向与机遇进行了展望。

Abstract

Lithium-ion batteries quickly occupy the absolute leading position in the secondary battery market because of their high energy density and long cycling life. However,battery thermal runaway frequently causes fire accidents,so battery safety research is of great importance and urgency. Separator as one of the key components of the lithium-ion battery plays a crucial role in the safe operation of the battery. The development of high temperature resistant separators with excellent properties,such as high mechanical strength,low thermal shrinkage,and good self-extinguishing,can significantly enhance the safety of batteries at high temperatures. This paper systematically reviews the latest research progress in the development of high-temperature resistant separators for lithium-ion batteries,including the modification of commercial polyolefin separators and the structural and performance studies of three common high-temperature resistant separators (polyacrylonitrile,polyvinylidene fluoride,and aramid fiber). The characteristics parameters of separators,such as thickness,porosity,ionic conductivity,and thermal shrinkage,are summarized. Finally,the future development direction and opportunities of high-temperature resistant separators are prospected.

关键词

锂离子电池 / 耐高温隔膜 / 聚烯烃隔膜改性 / 聚丙烯腈 / 聚偏氟乙烯 / 芳纶纤维

Key words

lithium-ion battery / high temperature resistance separator / polyolefin separator modification / polyacrylonitrile / polyvinylidene fluoride / aramid fiber

中图分类号

TB34 / TQ152

引用本文

导出引用
孙文浩 , 刘娜 , 张锟 , . 高安全锂离子电池用耐高温隔膜的研究进展. 材料工程. 2025, 53(7): 104-120 https://doi.org/10.11868/j.issn.1001-4381.2024.000546
Wenhao SUN, Na LIU, Kun ZHANG, et al. Research progress in high temperature resistant separators for high safety lithium-ion batteries[J]. Journal of Materials Engineering. 2025, 53(7): 104-120 https://doi.org/10.11868/j.issn.1001-4381.2024.000546

参考文献

[1]
JAGUEMONT J BARDÉ F. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering2023231: 121014.
[2]
司惠楠, 苏如峰, 陈煜. 柔性锌离子电池研究及其在可穿戴传感器中的应用研究进展[J]. 材料工程202452(8): 29-41.
SI H N SU R F CHEN Y. Research progress in flexible Zn-ion batteries and their application in wearable sensor[J]. Journal of Materials Engineering202452(8): 29-41.
[3]
王继贤, 彭思侃, 王晨, 等. 石墨烯与导电聚合物PSS:PEDOT共包覆对LiCoO2材料高电压电化学性能的影响[J]. 航空材料学报202343(4): 129-136.
WANG J X PENG S K WANG C, et al. Preparation of LiCoO2 composite coated with graphene and PEDOT: PSS with enhanced electrochemical properties at high voltage for lithium-ion batteries[J]. Journal of Aeronautical Materials202343(4): 129-136.
[4]
杜文涛, 闫晓燕, 刘宝胜, 等. 可充电镁硫二次电池的研究与展望[J]. 材料工程202553(2): 96-105.
DU W T YAN X Y LIU B S, et al. Research progress in rechargeable magnesium-sulfur secondary batteries[J]. Journal of Materials Engineering202553(2): 96-105.
[5]
CHEN M Y YU Y OUYANG D X, et al. Research progress of enhancing battery safety with phase change materials[J]. Renewable and Sustainable Energy Reviews2024189: 113921.
[6]
刘娜, 张锟, 田君, 等. 锂离子电池高镍层状正极材料循环稳定性研究进展[J]. 材料工程202452(11): 62-73.
LIU N ZHANG K TIAN J, et al. Research progress in nickel-rich layered cathode materials cycling stability for lithium-ion batteries[J]. Journal of Materials Engineering202452(11): 62-73.
[7]
汪晨阳, 张安邦, 常增花, 等. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程202250(1): 67-79.
WANG C Y ZHANG A B CHANG Z H, et al. Progress in structure design and preparation of porous electrodes for lithium ion batteries[J]. Journal of Materials Engineering202250(1): 67-79.
[8]
MALLICK S GAYEN D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-a critical review[J]. Journal of Energy Storage202362: 106894.
[9]
RANA S KUMAR R BHARJ R S. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal2023463: 142336.
[10]
MCKERRACHER R D GUZMAN-GUEMEZ J WILLS R G A, et al. Advances in prevention of thermal runaway in lithium-ion batteries[J]. Advanced Energy and Sustainability Research20212(5): 2000059.
[11]
关旭泽, 李杨, 刘兴江. 锂金属负极界面及体相稳定化策略研究进展[J]. 材料工程202452(6): 1-14.
GUAN X Z LI Y LIU X J. Research progress in stabilization of interface and bulk structure of lithium metal anodes[J]. Journal of Materials Engineering202452(6): 1-14.
[12]
LIU W L JIANG Y WANG N, et al. Recent progress in flame retardant technology of battery: a review[J]. Resources Chemicals and Materials20232(1): 80-99.
[13]
WANG W X LI C C ZENG X L, et al. Application of polymer-based phase change materials in thermal safety management of power batteries[J]. Journal of Energy Storage202255: 105646.
[14]
LINGAPPAN N LEE W PASSERINI S, et al. A comprehensive review of separator membranes in lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews2023187: 113726.
[15]
THAKUR A K KUMAR A PARK H, et al. Composite separators for internal thermal management in rechargeable lithium batteries: a review[J]. Journal of Energy Storage202373: 108873.
[16]
TONG B LI X F. Towards separator safety of lithium-ion batteries: a review[J]. Materials Chemistry Frontiers20248(2): 309-340.
[17]
LIU J H WANG P GAO Z H, et al. Review on electrospinning anode and separators for lithium ion batteries[J]. Renewable and Sustainable Energy Reviews2024189: 113939.
[18]
LI J Y ZHANG Y Z SHANG R, et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability[J]. Energy Storage Materials202143: 143-157.
[19]
FENG X N OUYANG M G LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials201810: 246-267.
[20]
YU L Y GU J Y PAN C, et al. Recent developments of composite separators based on high-performance fibers for lithium batteries[J]. Composites Part A2022162: 107132.
[21]
LV W Q ZHANG X Y. Recent advances in lithium-ion battery separators with enhanced safety[M]∥60 Years of the Loeb-Sourirajan Membrane.Amsterdam:Elsevier, 2022: 269-304.
[22]
LIU Y H ZHANG Z J DU X W, et al. Poly (ether ether ketone) conferred polyolefin separators with high dimensional thermal stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces202315(31): 37354-37360.
[23]
CHEN Z J WANG T YANG X L, et al. TiO2 nanorod-coated polyethylene separator with well-balanced performance for lithium-ion batteries[J]. Materials202316(5): 2049.
[24]
PENG L Q KONG X B LI H, et al. A rational design for a high-safety lithium-ion battery assembled with a heatproof-fireproof bifunctional separator[J]. Advanced Functional Materials202131(10): 2008537.
[25]
YANG N LIANG Y H JIA S J. Enhanced thermal stability and electrochemical performance of polyacrylonitrile/cellulose acetate-electrospun fiber membrane by boehmite nanoparticles: application to high-performance lithium-ion batteries[J]. Macromolecular Materials and Engineering2021306(10): 2100300.
[26]
XIAO W GAO Q DUAN M H, et al. An advanced hybrid fibrous separator by in-situ confining growth method for high performance lithium-ion batteries[J]. Electrochimica Acta2022433: 141209.
[27]
LIU M C CHEN H J WU G, et al. Multifunctional robust aerogel separator towards high-temperature, large-rate, long-cycle lithium-ion batteries[J]. Chinese Chemical Letters202334(5): 107546.
[28]
LIU Y J WU Y X ZHENG J L, et al. Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes[J]. Nano Energy202182: 105723.
[29]
BABIKER D M D USHA Z R WAN C X, et al. Recent progress of composite polyethylene separators for lithium/sodium batteries[J]. Journal of Power Sources2023564: 232853.
[30]
MUN S C WON J H. Manufacturing processes of microporous polyolefin separators for lithium-ion batteries and correlations between mechanical and physical properties[J]. Crystals202111(9): 1013.
[31]
HEIDARI A A MAHDAVI H. Recent development of polyolefin-based microporous separators for Li-ion batteries: a review[J]. The Chemical Record202020(6): 570-595.
[32]
BICY K GUEYE A B ROUXEL D, et al. Lithium-ion battery separators based on electrospun PVDF: a review[J]. Surfaces and Interfaces202231: 101977.
[33]
LUO Y N GUO R S LI T T, et al. Application of polyaniline for Li-ion batteries, lithium-sulfur batteries, and supercapacitors[J]. ChemSusChem201912(8): 1591-1611.
[34]
LIN W X WANG F WANG H B, et al. Thermal-stable separators: design principles and strategies towards safe lithium-ion battery operations[J]. ChemSusChem202215(24): e202201464.
[35]
ZHANG L P LI X L YANG M R, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective[J].Energy Storage Materials202141: 522-545.
[36]
DAI X K ZHANG X M WEN J W, et al. Research progress on high-temperature resistant polymer separators for lithium-ion batteries[J]. Energy Storage Materials202251: 638-659.
[37]
ZHU L M DING G C HAN Q, et al. Review-recent developments in safety-enhancing separators for lithium-ion batteries[J]. Journal of The Electrochemical Society2021168: 100524.
[38]
YU J F DONG N X LIU B X, et al. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery[J]. Chemical Engineering Journal2022442: 136314.
[39]
DENG J H ZHANG G Q YANG X Q, et al. H-bond cross-linked polyimide nanofiber-modified polyethylene composite separators for lithium-ion batteries[J]. Energy & Fuels202337(9): 6770-6777.
[40]
MU X W ZHOU X WANG W, et al. Design of compressible flame retardant grafted porous organic polymer based separator with high fire safety and good electrochemical properties[J]. Chemical Engineering Journal2021405: 126946.
[41]
QI X T ZHANG Z TU C B, et al. Covalent grafting interface engineering to prepare highly efficient and stable polypropylene/mesoporous SiO2 separator for Li-ion batteries[J]. Applied Surface Science2021541: 148405.
[42]
LI X T ZHANG F ZHANG M J, et al. Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery[J]. Journal of Energy Storage202359: 106473.
[43]
YUE H L YAO Y F LI Y M, et al. Thermally resistant, mechanically robust, enamel-inspired hydroxyapatite/polyethylene nanocomposite battery separator[J]. Advanced Functional Materials202434(7): 2308039.
[44]
WANG Y WANG Q L WEI X Q, et al. A novel three-dimensional boehmite nanowhiskers network-coated polyethylene separator for lithium-ion batteries[J]. Ceramics International202147(7): 10153-10162.
[45]
XIAO Y K FU A ZOU Y, et al. High safety lithium-ion battery enabled by a thermal-induced shutdown separator[J]. Chemical Engineering Journal2022438: 135550.
[46]
WANG Z Y LI X G DONG N X, et al. Novel ZrO2@polyimde nano-microspheres-coated polyethylene separators for high energy density and high safety Li-ion battery[J]. Materials Today Energy202230: 101155.
[47]
XIE Y CHEN X F HAN K, et al. Natural halloysite nanotubes-coated polypropylene membrane as dual-function separator for highly safe Li-ion batteries with improved cycling and thermal stability[J]. Electrochimica Acta2021379: 138182.
[48]
CARTER M PAREKH M H TOMAR V, et al. Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries[J]. Applied Clay Science2021208: 106111.
[49]
HONG M Y CHEN D C ZHU W Y, et al. Synergistic effect of inorganic Mg(OH)2 and organic triphenyl phosphate based coating layers on flame-retardant separator for high-voltage Li||LiNi0.8Co0.1Mn0.1O2 cell[J]. Solid State Ionics2023393: 116184.
[50]
CHOU L Y YE Y S LEE H K, et al. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Letters202121(5): 2074-2080.
[51]
HUANG B Y HUA H M PENG L Q, et al. The functional separator for lithium-ion batteries based on phosphonate modified nano-scale silica ceramic particles[J]. Journal of Power Sources2021498: 229908.
[52]
LOU P ZHANG W X HAN Q G, et al. Fabrication of fire-response functional separators with microcapsule fire extinguishing agent for lithium-ion battery safety[J]. Nano Select20223(5): 947-955.
[53]
LI Y J YANG H C AHMADI A, et al. A thermal resistant and flame retardant separator reinforced by attapulgite for lithium-ion batteries via multilayer coextrusion[J]. Polymer2022253: 125027.
[54]
HABUMUGISHA J C USHA Z R YU R, et al. Thermally stable and high electrochemical performance ultra-high molecular weight polyethylene/poly (4-methyl-1-pentene) blend film used as Li-ion battery separator[J]. Applied Materials Today202124: 101136.
[55]
WANG C ZHU G B HU Y Q, et al. Porous sodium alginate/boehmite coating layer constructed on PP nonwoven substrate as a battery separator through polydopamine-induced Water-based coating method[J]. ChemElectroChem20229(20): e202200818.
[56]
CHENG H Y HOU J Y WANG Y J, et al. Zinc borate modified multifunctional ceramic diaphragms for lithium-ion battery[J]. Ceramics International202248(17): 24811-24821.
[57]
PENG L Q WANG X DAI J H, et al. A reinforced ceramic-coated separator by overall-covered modification of electron-insulated polypyrrole for the safe performance of lithium-ion batteries[J]. Materials Chemistry Frontiers20215(4): 1884-1894.
[58]
BABIKER D M D WAN C X MANSOOR B, et al. Superior lithium battery separator with extraordinary electrochemical performance and thermal stability based on hybrid UHMWPE/SiO2 nanocomposites via the scalable biaxial stretching process[J]. Composites Part B: Engineering2021211: 108658.
[59]
LIU Z F PENG Y T MENG T, et al. Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries[J]. Energy Storage Materials202247: 445-452.
[60]
JIA S J LIANG Y H YANG N. High performance of polyacrylonitrile/[MgAl]-layered double hydroxide composite nanofiber separators for safe lithium-ion batteries[J]. Solid State Ionics2021370: 115735.
[61]
LEE J H NATHAN M G T KIM H W, et al. A high-stable polyacrylonitrile/ceramic composite membranes for high-voltage lithium-ion batteries[J]. Materials Chemistry and Physics2022291: 126516.
[62]
GAO T T TIAN P YANG Y Y, et al. A composite fiber separator with reversible thermal shutdown for safety of lithium-ion batteries[J]. Energy Technology202210(9): 2200183.
[63]
LENG X L YANG M D LI C P, et al. High-performance separator for lithium-ion battery based on dual-hybridizing of materials and processes[J]. Chemical Engineering Journal2022433: 133773.
[64]
GUO M XIONG J JIN X Y, et al. Mussel stimulated modification of flexible janus PAN/PVDF-HFP nanofiber hybrid membrane for advanced lithium-ion batteries separator[J]. Journal of Membrane Science2023675: 121533.
[65]
DONG T YU Z CHOI J, et al. Lithium-ion battery separator prepared by double-matrix encapsulation and penetration[J]. ACS Applied Energy Materials20214(6): 6062-6073.
[66]
CAO D Q DENG J H JIANG L Q, et al. Designing polyimide/polyacrylonitrile/polyimide sandwich composite separator for rechargeable lithium-ion batteries[J]. Journal of Energy Storage202255: 105496.
[67]
GUO M DONG S Y XIONG J, et al. Flexible core-shell PAN/CNTs@PVDF-HFP/Uio-66-NH2 hybrid nanofibers membrane for advanced lithium-ion batteries separator[J]. Materials Today Chemistry202330: 101552.
[68]
KANG S H JANG J K JEONG H Y, et al. Polyacrylonitrile/phosphazene composite-based heat-resistant and flame-retardant separators for safe lithium-ion batteries[J]. ACS Applied Energy Materials20225(2): 2452-2461.
[69]
LIU Z F HU Q M GUO S T, et al. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries[J]. Advanced Materials202133(15): 2008088.
[70]
LIU P Y ZHANG X F MA C, et al. Preparation and properties of PP/PAN/cotton fibers composite membrane as lithium-ion battery separator with thermal shut-off function[J]. Batteries20239(2): 113.
[71]
KANG S H JEONG H Y KIM T H, et al. Aluminum diethylphosphinate-incorporated flame-retardant polyacrylonitrile separators for safety of lithium-ion batteries[J]. Polymers202214(9): 1649.
[72]
GAO X X SHENG L XIE X, et al. Morphology optimizing of polyvinylidene fluoride (PVDF) nanofiber separator for safe lithium-ion battery[J]. Journal of Applied Polymer Science2022139(20): 52154.
[73]
LUO L GAO Z H ZHENG Z M, et al. "Polymer-in-ceramic" membrane for thermally safe separator applications[J]. ACS Omega20227(40): 35727-35734.
[74]
RAI A A STOJANOVSKA E AKGUL Y, et al. Fabrication of co-PVDF/modacrylic/SiO2 nanofibrous membrane: composite separator for safe and high performance lithium-ion batteries[J]. Journal of Applied Polymer Science2021138(7): 49835.
[75]
LUO L MA K SONG X, et al. A magnesium carbonate hydroxide nanofiber/poly (vinylidene fluoride) composite membrane for high-rate and high-safety lithium-ion batteries[J]. Polymers202315(20): 4120.
[76]
LI D T GAO X X CAO M, et al. High-performance nano-TiO2@polyvinylidene fluoride composite separators prepared by electrospinning for safe lithium-ion battery[J]. Journal of Applied Polymer Science2023140(11): e53618.
[77]
ZUO L L MA Q LI S C, et al. Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries[J]. Advanced Energy Materials202111(3): 2003285.
[78]
ZENG Z Y SHAO Z G SHEN R M, et al. Coaxial electrospun tai chi-inspired lithium-ion battery separator with high performance and fireproofing capacity[J]. ACS Applied Materials & Interfaces202315(37): 44259-44267.
[79]
GAO Z H LUO L WEN R Y, et al. A multifunctional composite membrane for high-safety lithium-ion batteries[J]. Journal of Materials Chemistry A202311(4): 1774-1784.
[80]
SHAO F Q KANG G Y CHEN H T, et al. Preparation of flame-retardant lithium-ion battery separator by coaxial electrospinning[C]∥2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Xiamen:Institute of Electrical and Electronics Engineers, 2021: 1035-1038.
[81]
ZHENG G F ZENG Z Y SHAO Z G, et al. Coaxial electrospun core-shell lithium-ion battery separator with flame retardant and thermal shutdown functions[J]. Materials Chemistry and Physics2023301: 127647.
[82]
YANG B WANG L ZHANG M Y, et al. Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress[J]. Journal of Materials Chemistry A20219(22): 12923-12946.
[83]
王歆怡, 罗诗雨, 樊嘉乐, 等. 高强度芳纶纳米纤维隔膜在高温锂电池中的研究[J]. 山东化工202352(9): 30-33.
WANG X Y LUO S Y FAN J L, et al. Study on high strength aramid nano fiber separator in high temperature lithium battery[J]. Shandong Chemical Industry202352(9): 30-33.
[84]
ZHANG S F LUO J ZHANG F J, et al. Highly porous and thermally stable zeolitic imidazolate framework-8/aramid nanofibers composite separator for lithium-ion batteries[J]. Composites Communications202232: 101183.
[85]
LIU X QIN M H SUN W, et al. Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method[J]. International Journal of Biological Macromolecules2023225: 1476-1486.
[86]
LI X G LIU K F DONG N X, et al. A dendrite-blocking polyimide-meta-aramid separator with ultrahigh strength and thermostability for high-security lithium-ion battery[J]. Chemical Engineering Journal2024481: 148525.
[87]
ZHANG S F LUO J ZHANG F J, et al. A porous, mechanically strong and thermally stable zeolitic imidazolate framework-8@bacterial cellulose/aramid nanofibers composite separator for advanced lithium-ion batteries[J]. Journal of Membrane Science2022652: 120461.
[88]
TANG W LIU Q Q LUO N, et al. High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery[J]. Composites Science and Technology2022225: 109479.
[89]
ZHANG S F LUO J DU M, et al. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers[J]. European Polymer Journal2022171: 111222.
[90]
PAN J L ZHANG Z ZHOU M L, et al. Aramid nanofiber reinforced cellulose paper for high-safety lithium-ion batteries[J]. Cellulose202128: 10579-10588.
[91]
PAREKH M H, OKA S, LUTKENHAUS J, et al. Critical-point-dried, porous, and safer aramid nanofiber separator for high-performance durable lithium-ion batteries[J]. ACS Applied Materials & Interfaces202214(25): 29176-29187.

基金

国家自然科学基金(22209156)

评论

PDF(6505 KB)

Accesses

Citation

Detail

段落导航
相关文章

/