
脉冲微孔喷射法制备单分散球形Al-Si合金粒子储能材料的研究
连云秀, 许富民, 董伟
脉冲微孔喷射法制备单分散球形Al-Si合金粒子储能材料的研究
Mono-sized spherical Al-Si alloy particles for energy storage materials prepared by pulsated orifice ejection method
金属相变材料在提升能源利用效率和节能减排方面具有广阔的应用前景。本研究通过采用脉冲微孔喷射法(pulsated orifice ejection method,POEM)成功合成A30、H30、A50、H50合金粒子作为高温储热的金属相变材料。结果表明:POEM制备的粒子呈单分散状态,具有高球形度、高纯度,表面光滑致密以及均匀的粒径分布等特点。此外,这些粒子表现出优异的热稳定性和高潜热值。其中,A30、H30、A50、H50粒子的熔化潜热为347.54、359.67、262.63、284.82 J/g,而相应的凝固潜热为366.24、377.50、256.82、296.47 J/g。经历多次热循环后,这些粒子仍能保持较高的能量储存密度和较好的结构稳定性。通过POEM制备的Al-Si合金粒子在相变储能领域具有显著的应用潜力,为开发新型高效储能材料提供了重要依据。
Metal phase-change materials (PCMs) show great potential in improving energy efficiency and conservation. In this study, A30, H30, A50 and H50 alloy particles are successfully synthesized using the pulsated orifice ejection method (POEM) as high-temperature thermal storage PCMs. The results show that the POEM-fabricated particles exhibit mono-sized, high sphericity, high purity, smooth and dense surfaces, and uniform particle size distribution. Moreover, thermal performance analysis reveals that these particles possess excellent thermal stability and high latent heat values. The melting latent heats of A30, H30, A50 and H50 particles are 347.54, 359.67, 262.63, 284.82 J/g, respectively, with corresponding solidification latent heats of 366.24, 377.50, 256.82, 296.47 J/g. After multiple thermal cycles, these particles maintain high energy storage density and good structural stability. Al-Si alloy particles prepared via POEM demonstrate significant application potential in the field of phase-change energy storage, providing important evidence for the development of novel and high-efficiency energy storage materials.
脉冲微孔喷射法 / Al-Si合金粒子 / 金属相变材料 / 储能
POEM / Al-Si alloy particle / metal phase-change material / energy storage
TB34
[1] |
张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展, 2022, 41(12):6408-6418.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
赵新波,李传常,谢宝珊,等. 熔融盐金属复合相变储热材料的研究进展[J]. 中国材料进展, 2019, 38(12):1178-1185.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
董伟,慈恒坚,王旭东,等. 单分散Al-4.5wt%Cu合金粒子的制备与凝固过程模拟[J]. 热加工工艺, 2024, 53(1): 148-154.
|
[18] |
|
[19] |
|
[20] |
许富民,李安平,董伟,等. 脉冲微孔喷射法制备单分散Al-70%Sn核壳结构粒子及其相分离行为[J].材料工程, 2023, 51(4):159-166.
|
[21] |
|
[22] |
|
[23] |
张仁元, 孙建强, 柯秀芳, 等. Al-Si合金的储热性能[J]. 材料研究学报, 2006, 20(2):156-180.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
/
〈 |
|
〉 |