脉冲微孔喷射法制备单分散球形Al-Si合金粒子储能材料的研究

连云秀, 许富民, 董伟

PDF(6757 KB)
PDF(6757 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 145-153. DOI: 10.11868/j.issn.1001-4381.2024.000545
研究论文

脉冲微孔喷射法制备单分散球形Al-Si合金粒子储能材料的研究

作者信息 +

Mono-sized spherical Al-Si alloy particles for energy storage materials prepared by pulsated orifice ejection method

Author information +
History +

摘要

金属相变材料在提升能源利用效率和节能减排方面具有广阔的应用前景。本研究通过采用脉冲微孔喷射法(pulsated orifice ejection method,POEM)成功合成A30、H30、A50、H50合金粒子作为高温储热的金属相变材料。结果表明:POEM制备的粒子呈单分散状态,具有高球形度、高纯度,表面光滑致密以及均匀的粒径分布等特点。此外,这些粒子表现出优异的热稳定性和高潜热值。其中,A30、H30、A50、H50粒子的熔化潜热为347.54、359.67、262.63、284.82 J/g,而相应的凝固潜热为366.24、377.50、256.82、296.47 J/g。经历多次热循环后,这些粒子仍能保持较高的能量储存密度和较好的结构稳定性。通过POEM制备的Al-Si合金粒子在相变储能领域具有显著的应用潜力,为开发新型高效储能材料提供了重要依据。

Abstract

Metal phase-change materials (PCMs) show great potential in improving energy efficiency and conservation. In this study, A30, H30, A50 and H50 alloy particles are successfully synthesized using the pulsated orifice ejection method (POEM) as high-temperature thermal storage PCMs. The results show that the POEM-fabricated particles exhibit mono-sized, high sphericity, high purity, smooth and dense surfaces, and uniform particle size distribution. Moreover, thermal performance analysis reveals that these particles possess excellent thermal stability and high latent heat values. The melting latent heats of A30, H30, A50 and H50 particles are 347.54, 359.67, 262.63, 284.82 J/g, respectively, with corresponding solidification latent heats of 366.24, 377.50, 256.82, 296.47 J/g. After multiple thermal cycles, these particles maintain high energy storage density and good structural stability. Al-Si alloy particles prepared via POEM demonstrate significant application potential in the field of phase-change energy storage, providing important evidence for the development of novel and high-efficiency energy storage materials.

关键词

脉冲微孔喷射法 / Al-Si合金粒子 / 金属相变材料 / 储能

Key words

POEM / Al-Si alloy particle / metal phase-change material / energy storage

中图分类号

TB34

引用本文

导出引用
连云秀 , 许富民 , 董伟. 脉冲微孔喷射法制备单分散球形Al-Si合金粒子储能材料的研究. 材料工程. 2025, 53(6): 145-153 https://doi.org/10.11868/j.issn.1001-4381.2024.000545
Yunxiu LIAN, Fumin XU, Wei DONG. Mono-sized spherical Al-Si alloy particles for energy storage materials prepared by pulsated orifice ejection method[J]. Journal of Materials Engineering. 2025, 53(6): 145-153 https://doi.org/10.11868/j.issn.1001-4381.2024.000545

参考文献

[1]
张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展202241(12):6408-6418.
ZHANG X Y ZHAO Z X. Research progress of metal-organic framework-based phase-change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress202241(12):6408-6418.
[2]
COSTA S C KENISARIN M. A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable Sustainable Energy Reviews2022154:111812.
[3]
FARID M M KHUDLHAIR A M RAZACK S A, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion & Management200445(9/10):1597-1615.
[4]
GUO J WANG X YANG B, et al. Thermal assessment on solid-liquid energy storage tube packed with non-uniform angled fins[J]. Solar Energy Materials and Solar Cells2022236: 111526.
[5]
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable Sustainable Energy Reviews201014(3):955-970.
[6]
赵新波,李传常,谢宝珊,等. 熔融盐金属复合相变储热材料的研究进展[J]. 中国材料进展201938(12):1178-1185.
ZHAO X B LI C C XIE B S, et al. Research Progress of molten salt/metal composite phase change materials for thermal energy Storage[J]. Materials China201938(12):1178-1185.
[7]
HAN C ZHANG M HUANG A, et al. Al-Si @ Al2O3 @ mullite microcapsules for thermal energy storage: preparation and thermal properties[J]. Solar Energy Materials and Solar Cells2020217:110697.
[8]
WEI H WANG C YANG S, et al. Novel core/void/shell composite phase change materials for high temperature thermal energy storage[J]. Chemical Engineering Journal2020391:123539.
[9]
LI Q CONG L ZHANG X, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells2020211:110511.
[10]
GU H HAN C ZHANG M, et al. Preparation and formation mechanism of Al-Si/Al2O3 core-shell structured particles fabricated via steam corrosion[J]. Ceramics International201945(11): 13809-13817.
[11]
HAN C GU H ZHANG M, et al. Thermal properties of Al-Si/Al2O3 core-shell particles prepared by using steam hydration method[J]. Journal of Alloys Compounds2020817: 152801.
[12]
LIAN Y DONG W XU F. Preparation of mono-sized high sphericity Al-Si alloy particles for thermal energy storage materials by pulsated orifice ejection method[J]. Powder Technology2024440: 119789.
[13]
OSMAN H LIU L. Additive manufacturing of high-entropy alloy composites: a review[J]. Transactions of Nonferrous Metals Society of China202333(1): 1-24.
[14]
SINGH R SANINI R SANINI J. Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes[J]. Solar Energy200680(7):760-771.
[15]
MASUDA S DONG W TAKAGI K, et al. The development of mono-sized micro silicon particles for spherical solar cells by pulsated orifice ejection method[J]. Materials Science Forum2007534/536: 149-152.
[16]
DONG W MENG Y XU F, et al. Preparation of Sn-Pb spherical fine metal powders by centrifugal atomization based on mono-sized droplets[J]. Powder Metallurgy and Metal Ceramics202059(5/6):239-248.
[17]
董伟,慈恒坚,王旭东,等. 单分散Al-4.5wt%Cu合金粒子的制备与凝固过程模拟[J]. 热加工工艺202453(1): 148-154.
DONG W CI H J WANG X D, et al. Preparation and solidification process simulation of monodisperse Al-4.5wt% Cu alloy particles[J]. Hot Working Technology202453(1): 148-154.
[18]
HU Y YUE W LI J al et, Preparation and characterization of monosized Cu-Sn spherical alloy particles by pulsated orifice ejection method[J]. Journal of Materials Research201833(18): 2835-2843.
[19]
DONG W JIA Z WANG X, et al. Size-on-demand preparation of SAC305 solder balls based on pulsated orifice ejection method[J]. Vacuum2023217: 112522.
[20]
许富民,李安平,董伟,等. 脉冲微孔喷射法制备单分散Al-70%Sn核壳结构粒子及其相分离行为[J].材料工程202351(4):159-166.
XU F M LI A P DONG W, et al. Phase separation behavior of mono-sized Al-70%Sn coreshell particles fabricated by pulsated orifice ejection method[J]. Journal of Materials Engineering202351(4):159-166.
[21]
LI M OMURA N MURAKAMI Y, et al. A comparative study of the primary phase formation in Al-7 wt% Si and Al-17wt% Si alloys solidified by electromagnetic stirring processing[J]. Materials Today Communications202024: 101146.
[22]
WANGNER C. The mechanism of oxidation of metals at high temperatures[J]. Advances in Catalysis196113: 259-331.
[23]
张仁元, 孙建强, 柯秀芳, 等. Al-Si合金的储热性能[J]. 材料研究学报200620(2):156-180.
ZHANG R Y SUN J Q KE X F, et al. Heat storage properties of Al-Si alloy[J]. Chinese Journal of Materials Research200620(2): 156-180.
[24]
ZOU Q, JIE J, SHEN Z, et al. A new concept of Al-Si alloy with core-shell structure as phase change materials for thermal energy storage[J]. Materials Letters2019237:193-196.
[25]
LI K ZHANG J CHEN X, et al. Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity[J]. Journal of Materials and Technology20209(4):8780-8786.
[26]
PALACIOS A CONG L NAVARRO M, et al. Thermal conductivity measurement techniques for characterizing thermal energy storage materials—a review[J]. Renewable & Sustainable Energy Reviews2019108: 32-52.
[27]
ZHOU T LIU X LI Y, et al. Dynamic measurement of the thermal conductivity of phase change materials in the liquid phase near the melting point[J]. International Journal of Heat and Mass Transfer2017111: 631-641.
[28]
ZHANG J ZHANG M LI H, et al. Degradation mechanism of cyclic heat storage properties of Al-Si @Al2O3 microcapsules[J]. Ceramics International202349(9): 13631-13638.

基金

国家自然科学基金项目(51571050)

评论

PDF(6757 KB)

Accesses

Citation

Detail

段落导航
相关文章

/