聚合物在高容量高安全性锂基电池中的研究进展

王家琪, 王智勇, 黎艳艳, 余明明, 王辉

PDF(2939 KB)
PDF(2939 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 121-131. DOI: 10.11868/j.issn.1001-4381.2024.000536
综述

聚合物在高容量高安全性锂基电池中的研究进展

作者信息 +

Research progress of polymer in high capacity and high safety lithium-based battery

Author information +
History +

摘要

锂基电池(lithium-based batteries, LBBs)被广泛应用于便携式电子设备和电动汽车领域,是当前和未来储能技术中的关键组成部分。锂硫电池(lithium sulfur batteries,LSBs)因其高能量密度(2600 Wh·kg-1),被认为是下一代高能量密度电池的理想选择。聚合物材料因其独特的长链结构和高黏附力,在LSBs黏结剂的应用中展现出卓越的性能优势。本文综述了聚合物材料在提高锂基电池安全性和稳定性方面的最新研究进展与应用前景,重点讨论了聚合物材料在LBBs隔膜修饰材料、固态电解质、黏结剂及阻燃剂中的应用情况,介绍了聚合物人工固态电解质界面膜及固态电解质对枝晶生长的抑制能力及机理,指出了聚合物的阻燃性能及其作为固态电解质的作用机理。最后,基于聚合物优异的可塑性和化学可控性,对其通过分子设计实现高离子电导率与界面稳定性实现其在LBBs储能方面的潜力进行了展望。

Abstract

Lithium-based batteries (LBBs) are widely used in portable electronic devices and electric vehicles, serving as a pivotal component in both current and emerging energy storage technologies. Lithium-sulfur batteries are considered as the ideal choice for the next generation of high-energy density batteries due to their high energy density (2600 Wh·kg-1). Due to the unique long chain structure and high adhesion force of polymer materials, it shows excellent performance advantages in the application of lithium-sulfur battery binder. This paper reviews the latest research progress and application prospect of polymer materials in improving the safety and stability of lithium batteries. The application of polymer materials in modified separators, solid state electrolytes, binders and flame retardants for LBBs is mainly discussed. In addition, the inhibition ability and mechanism of polymer artificial solid state electrolyte interface film and solid state electrolyte on dendrite growth are introduced, and the flame retardant property of polymer and its mechanism as solid state electrolyte are pointed out. Finally, based on the excellent plasticity and chemical controllability of polymers, the potential of high ionic conductivity and interface stability achieved by molecular design in LBBs energy storage is prospected.

关键词

锂基电池 / 聚合物材料 / 锂硫电池 / 固态电解质 / 电池黏结剂

Key words

lithium-based battery / polymer material / lithium-sulfur battery / solid state electrolyte / battery binder

中图分类号

TQ311

引用本文

导出引用
王家琪 , 王智勇 , 黎艳艳 , . 聚合物在高容量高安全性锂基电池中的研究进展. 材料工程. 2025, 53(7): 121-131 https://doi.org/10.11868/j.issn.1001-4381.2024.000536
Jiaqi WANG, Zhiyong WANG, Yanyan LI, et al. Research progress of polymer in high capacity and high safety lithium-based battery[J]. Journal of Materials Engineering. 2025, 53(7): 121-131 https://doi.org/10.11868/j.issn.1001-4381.2024.000536

参考文献

[1]
JIANG M F ZHANG Z Q TANG B, et al .Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization[J]. Journal of Energy Chemistry202158: 300-317.
[2]
ZHU J D ZHU P YAN C Y, et al .Recent progress in polymer materials for advanced lithium-sulfur batteries[J]. Progress in Polymer Science201990: 118-163.
[3]
CHOI S KWON T W COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science2017357(6348): 279-283.
[4]
JUDEZ X ZHANG H LI C M, et al. Lithium bis(fluor sulfonyl)imide/poly (ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. The Journal of Physical Chemistry Letters20178(9): 1956-1960.
[5]
WEI Y LI X XU Z, et al. Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li-S batteries[J]. Polymer Chemistry20156(6): 973-982.
[6]
SEH Z W ZHANG Q LI W, et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chemical Science20134(9): 3673-3677.
[7]
WANG H WANG Y ZHANG G, et al. Water-based dual-network conductive polymer binders for high-performance Li-S batteries[J]. Electrochimica Acta2021371: 137822.
[8]
LIU H CHENG X B JIN Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. Energy Chem20191(1): 100003.
[9]
LUO Y LI T ZHANG H, et al. New insights into the formation of silicon-oxygen layer on lithium metal anode via in-situ reaction with tetraethoxysilane[J]. Journal of Energy Chemistry202056: 14-22.
[10]
ZHU W C XIAO R G CAI Z H, et al. Electrochemically active layer on the surface of poly(anthraquinonyl sulfide) anode in dual-ion batteries[J]. Polymer2021212(1): 123167.
[11]
LENNARTZ P BORZUTZKI K WINTER M, et al. Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes[J]. Electrochimica Acta2021388(7): 138526.
[12]
CHEN T WU H WAN J, et al. Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes[J]. Journal of Energy Chemistry202162: 172-178.
[13]
ZHOU D SHANMUKARAJ D TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects[J]. Chem20195(9): 2326-2362.
[14]
LIU K LIU W QIU Y C, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances20173(1): e1601978.
[15]
LI H Y LI G A LEE Y Y, et al. A thermally stable, combustion-resistant, and highly ion-conductive separator for lithium-ion batteries based on electrospun fiber mats of crosslinked polybenzoxazine[J]. Energy Technology20164(4): 551-557.
[16]
YOO G KIM S CHANTHAD C, et al. Elastic rubber-containing multifunctional binder for advanced Li-S batteries[J]. Chemical Engineering Journal2020405:126628.
[17]
XU Z L KIM J K KANG K. Carbon nanomaterials for advanced lithium sulfur batteries[J]. Nano Today201819: 84-107.
[18]
KIM A, OH S, HADHIKARI A, et al. Recent advances in modified commercial separators for lithium-sulfur batteries[J]. Journal of Materials Chemistry A202311(15): 7833-7866.
[19]
HAREENDRAKRISSHNAKUMAR H CHULLIYOTE R JOSEPH M G, et al. Sulfonic groups stemmed ionic shield for polysulfides towards high performance Li-S batteries[J]. Electrochimica Acta2019321: 134697.
[20]
DIAO W XIE D LI D, et al. Ion sieve membrane: homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery[J]. Journal of Colloid and Interface Science2022627: 730-738.
[21]
LI Y GUO S. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter20214(4): 1142-1188.
[22]
SU C J ZHANG D OSTWAL M, et al. Functional two-dimensional coordination polymeric layer as a charge barrier in Li-S batteries[J]. ACS Nano201812(1): 836-843.
[23]
GAO J SUN C XU L, et al. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode[J]. Journal of Power Sources2018382: 179-189.
[24]
XIE P ZHANG B ZHOU Y, et al. A dual-coated multifunctional separator for the high-performance lithium-sulfur batteries[J]. Electrochimica Acta2021395: 139181.
[25]
LI Y J WANG W Y LIU X X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Materials201923: 261-268.
[26]
ZHANG Q HUANG Q H HAO S M, et al. Polymers in lithium-sulfur batteries[J]. Advanced Science20219(2): 2103798.
[27]
XIANG H Y DENG N P ZHAO H J, et al. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: progress and prospects[J]. Journal of Energy Chemistry202158: 523-556.
[28]
WANG J CHEN J KONSTANTINOV K, et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochimica Acta200551(22): 4634-4638.
[29]
LI W Y ZHANG Q F ZHENG G Y, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters201313(11): 5534-5540.
[30]
JEONG T G LEE Y S CHO B W, et al. Improved performance of dual-conducting polymer-coated sulfur composite with high sulfur utilization for lithium-sulfur batteries[J]. Journal of Alloys and Compounds2018742: 868-876.
[31]
PARK K CHO J H JANG J H, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix[J]. Energy & Environmental Science20158(8): 2389-2395.
[32]
WEI Y Q YAN Y L ZOU Y M, et al. The ternary conductive polymer coated S/BDPC composite cathode for enhancing the electrochemical prospects in Li-S batteries[J]. Surface & Coatings Technology2019358: 560-566.
[33]
TSAO Y C CHEN Z RONDEAU-GAGNE S, et al. Enhanced cycling stability of sulfur electrodes through effective binding of pyridine-functionalized polymer[J]. ACS Energy Letters20172(10): 2454-2462.
[34]
HU M MA Q YUAN Y, et al. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries[J]. Chemical Engineering Journal2020388: 124258.
[35]
LIANG Y KANG W ZHONG C, et al. Multifunctional LaF3 doped pomegranate-like porous carbon nanofibers with high-speed transfer channel and strong polar interface for high stability lithium sulfur battery[J]. Chemical Engineering Journal2021403: 126449.
[36]
PHAM H Q KIM G JUNG H M, et al. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries[J]. Advanced Functional Materials201828(2):1704690.
[37]
PHAM H Q, NAM, K M, HWANG E H, Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O 2 battery cathode using fluorinated linear carbonate as a high-voltage additive[J]. Journal of the Electrochemical Society, 2014, 161: 14.
[38]
MILROY C MANTHIRAM A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials201628(44):9744-9751.
[39]
GAO H LU Q YAO Y J, et al. Significantly raising the cell performance of lithium sulfur battery via the multifunctional polyaniline binder[J]. Electrochimica Acta2017232: 414-421.
[40]
YAN L GAO X THOMAS J P, et al. Ionically cross-linked PEDOT:PSS as a multi-functional conductive binder for high-performance lithium-sulfur batteries[J]. Sustainable Energy & Fuels20182(7): 1574-1581.
[41]
JIA M Q QIN X ZHANG X H, et al. Novel rigid-flexible hydrogenated carboxyl nitrile rubber-guar gum binder for ultra-long cycle silicon anodes in lithium-ion batteries[J]. Journal of Power Sources2023561: 232759.
[42]
RAMAN A S JOHNSON B R JHULKI S, et al. Solid-state lithium batteries with in situ polymerized acrylate-based electrolytes capable of electrochemically stable operation at 100 ℃[J]. ACS Sustainable Chemistry & Engineering202416(43): 58506-58519.
[43]
LIU L ZHANG D C XU X J, et al. Challenges and development of composite solid electrolytes for all-solid-state lithium batteries[J]. Chemical Research in Chinese Universities202137:210-231.
[44]
HU Y XIE X LI W, et al. Recent progress of polymer electrolytes for solid-state lithium batteries[J]. ACS Sustainable Chemistry & Engineering202311(4): 1253-1277.
[45]
QIAN J JIN B LI Y, et al. Research progress on gel polymer electrolytes for lithium-sulfur batteries[J]. Journal of Energy Chemistry202156: 420-437.
[46]
YIN K ZHANG Z LI X, et al. Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries[J]. Journal of Materials Chemistry A20143(1): 170-178.
[47]
张竹涵,蒋峰景,吴珂科,等.基于3D固态负极的铁铅单液流电池研究[J].化学学报202280(1): 56-62.
ZHANG Z H JIANG F J WU K K, et al. Research on iron-lead semi-flow battery based on 3D solid electrode[J]. Acta Chimica Sinica202280(1): 56-62.
[48]
CHOI W KANG Y KIM I J, et al. Stable cycling of a 4 V class lithium polymer battery enabled by in situ cross-linked ethylene oxide/propylene oxide copolymer electrolytes with controlled molecular structures[J]. ACS Applied Materials & Interfaces202113(30): 35664-35676.
[49]
YI J ZHOU D LIANG Y, et al. Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film[J]. Journal of Energy Chemistry202158:17-24.
[50]
JAMALPOUR S GHAHRAMANI M GHAFFARIAN S R, et al. Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride)[J]. Polymer2021228: 123924.
[51]
WANG X FANG Y YAN X, et al. Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries[J]. Polymer2021230: 124038.
[52]
MACKANIC D G WESLEY M MINAH L, et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Advanced Energy Materials20188(25): 1800703.
[53]
LI L CHEN Y GUO X, et al. Preparation of sodium trimetaphosphate and its application as an additive agent in a novel polyvinylidene fluoride based gel polymer electrolyte in lithium sulfur batteries[J]. Polymer Chemistry20156(9): 1619-1626.
[54]
SHANTHI P M HANUMANTHA P J ALBUQUERQUE T, et al. Novel composite polymer electrolytes of PVdF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium-sulfur batteries[J]. ACS Applied Energy Materials20181(2): 483-494.
[55]
YANG Q L LI W L DONG C, et al. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries[J]. Journal of Energy Chemistry202042: 83-90.
[56]
ZHAO Q STALIN S ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule20215(5): 1119-1142.
[57]
LIU K PEI A LEE H R, et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer[J]. Journal of the American Chemical Society2017139(13): 4815-4820.
[58]
JIN Q ZHANG X GAO H, et al. Novel Li x SiS y /Nafion as an artificial SEI film to enable dendrite-free Li metal anodes and high stability Li-S batteries[J]. Journal of Materials Chemistry A20208(18): 8979-8988.
[59]
LOPEZ J PEI A OH J Y, et al. Effects of polymer coatings on electrodeposited lithium metal[J]. Journal of the American Chemical Society2018140(37): 11735-11744.
[60]
KANG D SARDAR S ZHANG R, et al. In-situ organic SEI layer for dendrite-free lithium metal anode[J]. Energy Storage Materials202027: 69-77.
[61]
XIAO Y XU R YAN C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin202065(11): 909-916.
[62]
ZHENG Y T SNEHASHIS C MICHAEL J, et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries[J]. Joule20171(2): 394-406.
[63]
AKHTAR N SUN X AKRAM M Y, et al. A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries[J]. Journal of Energy Chemistry202152: 310-317.
[64]
YE Z ZHAI S LIU R, et al. Sulfonate-rich polymer intercalated LDH artificial SEI film to enable high-stability Li-S batteries[J]. Chemical Engineering Journal2024479: 147847.

评论

PDF(2939 KB)

Accesses

Citation

Detail

段落导航
相关文章

/