
聚合物在高容量高安全性锂基电池中的研究进展
王家琪, 王智勇, 黎艳艳, 余明明, 王辉
聚合物在高容量高安全性锂基电池中的研究进展
Research progress of polymer in high capacity and high safety lithium-based battery
锂基电池(lithium-based batteries, LBBs)被广泛应用于便携式电子设备和电动汽车领域,是当前和未来储能技术中的关键组成部分。锂硫电池(lithium sulfur batteries,LSBs)因其高能量密度(2600 Wh·kg-1),被认为是下一代高能量密度电池的理想选择。聚合物材料因其独特的长链结构和高黏附力,在LSBs黏结剂的应用中展现出卓越的性能优势。本文综述了聚合物材料在提高锂基电池安全性和稳定性方面的最新研究进展与应用前景,重点讨论了聚合物材料在LBBs隔膜修饰材料、固态电解质、黏结剂及阻燃剂中的应用情况,介绍了聚合物人工固态电解质界面膜及固态电解质对枝晶生长的抑制能力及机理,指出了聚合物的阻燃性能及其作为固态电解质的作用机理。最后,基于聚合物优异的可塑性和化学可控性,对其通过分子设计实现高离子电导率与界面稳定性实现其在LBBs储能方面的潜力进行了展望。
Lithium-based batteries (LBBs) are widely used in portable electronic devices and electric vehicles, serving as a pivotal component in both current and emerging energy storage technologies. Lithium-sulfur batteries are considered as the ideal choice for the next generation of high-energy density batteries due to their high energy density (2600 Wh·kg-1). Due to the unique long chain structure and high adhesion force of polymer materials, it shows excellent performance advantages in the application of lithium-sulfur battery binder. This paper reviews the latest research progress and application prospect of polymer materials in improving the safety and stability of lithium batteries. The application of polymer materials in modified separators, solid state electrolytes, binders and flame retardants for LBBs is mainly discussed. In addition, the inhibition ability and mechanism of polymer artificial solid state electrolyte interface film and solid state electrolyte on dendrite growth are introduced, and the flame retardant property of polymer and its mechanism as solid state electrolyte are pointed out. Finally, based on the excellent plasticity and chemical controllability of polymers, the potential of high ionic conductivity and interface stability achieved by molecular design in LBBs energy storage is prospected.
锂基电池 / 聚合物材料 / 锂硫电池 / 固态电解质 / 电池黏结剂
lithium-based battery / polymer material / lithium-sulfur battery / solid state electrolyte / battery binder
TQ311
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
张竹涵,蒋峰景,吴珂科,等.基于3D固态负极的铁铅单液流电池研究[J].化学学报, 2022, 80(1): 56-62.
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
/
〈 |
|
〉 |